# Nonconservative Forces and Friction

Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good example of a nonconservative force. As illustrated in [link], work done against friction depends on the length of the path between the starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative forces. An important characteristic is that the work done by a nonconservative force *adds or removes mechanical energy from a system*. Friction, for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.

# How Nonconservative Forces Affect Mechanical Energy

*Mechanical* energy *may* not be conserved when nonconservative forces act. For example, when a car is brought to a stop by friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. [link] compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as that described in [link](a) first before studying more complicated systems as in [link](b).

# How the Work-Energy Theorem Applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in Kinetic Energy and the Work-Energy Theorem, the work-energy theorem states that the net work on a system equals the change in its kinetic energy, or ${W}_{\text{net}}=\text{\Delta KE}$. The net work is the sum of the work by nonconservative forces plus the work by conservative forces. That is,

so that

where ${W}_{\text{nc}}$ is the total work done by all nonconservative forces and ${W}_{\text{c}}$ is the total work done by all conservative forces.

Consider [link], in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we note that work done by a conservative force comes from a loss of gravitational potential energy, so that ${W}_{\text{c}}=-\text{\Delta}\text{PE}$. Substituting this equation into the previous one and solving for ${W}_{\text{nc}}$ gives

This equation means that the total mechanical energy $(\text{KE + PE})$ changes by exactly the amount of work done by nonconservative forces. In [link], this is the work done by the person minus the work done by friction. So even if energy is not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the change in total mechanical energy.

We rearrange ${W}_{\text{nc}}=\text{\Delta}\text{KE}+\text{\Delta}\text{PE}$ to obtain

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If ${W}_{\text{nc}}$ is positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in [link]. If ${W}_{\text{nc}}$ is negative, then mechanical energy is decreased, such as when the rock hits the ground in [link](b). If ${W}_{\text{nc}}$ is zero, then mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

# Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying ${\text{KE}}_{\text{i}}+{\text{PE}}_{\text{i}}+{W}_{\text{nc}}={\text{KE}}_{\text{f}}+{\text{PE}}_{\text{f}}$ amounts to applying the work-energy theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in situations that involve changes in both potential and kinetic energy, the previous equation ${\text{KE}}_{\text{i}}+{\text{PE}}_{\text{i}}+{W}_{\text{nc}}={\text{KE}}_{\text{f}}+{\text{PE}}_{\text{f}}$ says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces, including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces involved.

Consider the situation shown in [link], where a baseball player slides to a stop on level ground. Using energy considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force of friction against him is a constant 450 N.

**Strategy**

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The work done by friction is negative, because $\mathbf{\text{f}}$ is in the opposite direction of the motion (that is, $\theta =\text{180\xba}$, and so $\text{cos}\phantom{\rule{0.25em}{0ex}}\theta =-1$). Thus ${W}_{\text{nc}}=-\text{fd}$. The equation simplifies to

or

This equation can now be solved for the distance $d$.

**Solution**

Solving the previous equation for $d$ and substituting known values yields

**Discussion**

The most important point of this example is that the amount of nonconservative work equals the change in mechanical energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

Suppose that the player from [link] is running up a hill having a $5\text{.}\text{00\xba}$ incline upward with a surface similar to that in the baseball stadium. The player slides with the same initial speed. Determine how far he slides.

**Strategy**

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from his kinetic energy at zero height, to the final mechanical energy he has by moving through distance $d$ to reach height $h$ along the hill, with $h=d\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\mathrm{5.00\xba}$. This is expressed by the equation

**Solution**

The work done by friction is again ${W}_{\text{nc}}=-\text{fd}$; initially the potential energy is ${\text{PE}}_{\mathrm{i}}=\text{mg}\cdot 0=0$ and the kinetic energy is ${\text{KE}}_{\mathrm{i}}=\frac{1}{2}{{\text{mv}}_{\mathrm{i}}}^{2}$; the final energy contributions are ${\text{KE}}_{\mathrm{f}}=0$ for the kinetic energy and ${\text{PE}}_{\mathrm{f}}=\text{mgh}=\text{mgd}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $ for the potential energy.

Substituting these values gives

Solve this for $d$ to obtain

**Discussion**

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method would have required combining the normal force and force of gravity vectors, which no longer cancel each other because they point in different directions, and friction, to find the net force. You could then use the net force and the net work to find the distance $d$ that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy instead, we need only consider the gravitational potential energy $\text{mgh}$, without combining and resolving force vectors. This simplifies the solution considerably.

# Section Summary

- A nonconservative force is one for which work depends on the path.
- Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
- Work ${W}_{\text{nc}}$ done by a nonconservative force changes the mechanical energy of a system. In equation form, ${W}_{\text{nc}}=\text{\Delta}\text{KE}+\text{\Delta}\text{PE}$ or, equivalently, ${\text{KE}}_{\text{i}}+{\text{PE}}_{\text{i}}+{W}_{\text{nc}}={\text{KE}}_{\text{f}}+{\text{PE}}_{\text{f}}$.
- When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead of finding the net work from the net force, or having to directly apply Newton’s laws.

# Problems & Exercises

A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m-high rise as shown in [link]. Find her final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0800. (Hint: Find the distance traveled up the incline assuming a straight-line path as shown in the figure.)

9.46 m/s

(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h? (b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction? (c) What is the average force of friction if the hill has a slope $2\text{.}\mathrm{5\xba}$ above the horizontal?

### Tập tin đính kèm

- unifiedfile.2012-01-25.1546041403
- the-ramp_en.jar

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation