The oscillations of a system in which the net force can be described by Hooke’s law are of special importance, because they are very common. They are also the simplest oscillatory systems. Simple Harmonic Motion (SHM) is the name given to oscillatory motion for a system where the net force can be described by Hooke’s law, and such a system is called a simple harmonic oscillator. If the net force can be described by Hooke’s law and there is no * damping* (by friction or other non-conservative forces), then a simple harmonic oscillator will oscillate with equal displacement on either side of the equilibrium position, as shown for an object on a spring in [link]. The maximum displacement from equilibrium is called the amplitude $X$. The units for amplitude and displacement are the same, but depend on the type of oscillation. For the object on the spring, the units of amplitude and displacement are meters; whereas for sound oscillations, they have units of pressure (and other types of oscillations have yet other units). Because amplitude is the maximum displacement, it is related to the energy in the oscillation.

What is so significant about simple harmonic motion? One special thing is that the period $T$ and frequency $f$ of a simple harmonic oscillator are independent of amplitude. The string of a guitar, for example, will oscillate with the same frequency whether plucked gently or hard. Because the period is constant, a simple harmonic oscillator can be used as a clock.

Two important factors do affect the period of a simple harmonic oscillator. The period is related to how stiff the system is. A very stiff object has a large force constant $k$, which causes the system to have a smaller period. For example, you can adjust a diving board’s stiffness—the stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the mass of the oscillating system. The more massive the system is, the longer the period. For example, a heavy person on a diving board bounces up and down more slowly than a light one.

In fact, the mass $m$ and the force constant $k$ are the *only* factors that affect the period and frequency of simple harmonic motion.

If the shock absorbers in a car go bad, then the car will oscillate at the least provocation, such as when going over bumps in the road and after stopping (See [link]). Calculate the frequency and period of these oscillations for such a car if the car’s mass (including its load) is 900 kg and the force constant (*$k$*) of the suspension system is $6\text{.}\text{53}\times {\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}$.

**Strategy**

The frequency of the car’s oscillations will be that of a simple harmonic oscillator as given in the equation $f=\frac{1}{\mathrm{2\pi}}\sqrt{\frac{k}{m}}$. The mass and the force constant are both given.

**Solution**

- Enter the known values of
*k*and*m*:$f=\frac{1}{\mathrm{2\pi}}\sqrt{\frac{k}{m}}=\frac{1}{\mathrm{2\pi}}\sqrt{\frac{6\text{.}\text{53}\times {\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}}{\text{900}\phantom{\rule{0.25em}{0ex}}\text{kg}}}.$ - Calculate the frequency:
$\frac{1}{\mathrm{2\pi}}\sqrt{\text{72.}6/{\text{s}}^{\mathrm{\u20132}}}=1\text{.}{\text{3656}/\text{s}}^{\text{\u20131}}\approx 1\text{.}{\text{36}/\text{s}}^{\text{\u20131}}=\text{1.36 Hz}.$
- You could use $T=\mathrm{2\pi}\sqrt{\frac{m}{k}}$ to calculate the period, but it is simpler to use the relationship $T=1/f$ and substitute the value just found for $f$:
$T=\frac{1}{f}=\frac{1}{1\text{.}\text{356}\phantom{\rule{0.25em}{0ex}}\text{Hz}}=0\text{.}\text{738}\phantom{\rule{0.25em}{0ex}}\text{s}.$

**Discussion**

The values of $T$ and $f$ both seem about right for a bouncing car. You can observe these oscillations if you push down hard on the end of a car and let go.

# The Link between Simple Harmonic Motion and Waves

If a time-exposure photograph of the bouncing car were taken as it drove by, the headlight would make a wavelike streak, as shown in [link]. Similarly, [link] shows an object bouncing on a spring as it leaves a wavelike "trace of its position on a moving strip of paper. Both waves are sine functions. All simple harmonic motion is intimately related to sine and cosine waves.

The displacement as a function of time *t* in any simple harmonic motion—that is, one in which the net restoring force can be described by Hooke’s law, is given by

where $X$ is amplitude. At $t=0$, the initial position is ${x}_{0}=X$, and the displacement oscillates back and forth with a period $T$*.* (When $t=T$, we get $x=X$ again because $\text{cos}\phantom{\rule{0.25em}{0ex}}\mathrm{2\pi}=1$.). Furthermore, from this expression for *$x$*, the velocity $v$ as a function of time is given by:

where ${v}_{\text{max}}=\mathrm{2\pi}X/T=X\sqrt{k/m}$. The object has zero velocity at maximum displacement—for example, $v=0$ when $t=0$, and at that time $x=X$. The minus sign in the first equation for $v(t)$ gives the correct direction for the velocity. Just after the start of the motion, for instance, the velocity is negative because the system is moving back toward the equilibrium point. Finally, we can get an expression for acceleration using Newton’s second law. [Then we have $x(t),\phantom{\rule{0.25em}{0ex}}v(t),\phantom{\rule{0.25em}{0ex}}t,$ and $a(t)$, the quantities needed for kinematics and a description of simple harmonic motion.] According to Newton’s second law, the acceleration is $a=F/m=\text{kx}/m$*.* So, $a(t)$ is also a cosine function:

Hence, $a(t)$ is directly proportional to and in the opposite direction to $a(t)$.

[link] shows the simple harmonic motion of an object on a spring and presents graphs of $x(t),v(t),$ and $a(t)$ versus time.

The most important point here is that these equations are mathematically straightforward and are valid for all simple harmonic motion. They are very useful in visualizing waves associated with simple harmonic motion, including visualizing how waves add with one another.

# Section Summary

- Simple harmonic motion is oscillatory motion for a system that can be described only by Hooke’s law. Such a system is also called a simple harmonic oscillator.
- Maximum displacement is the amplitude
*$X$*. The period*$T$*and frequency $f$ of a simple harmonic oscillator are given by$T=\mathrm{2\pi}\sqrt{\frac{m}{k}}$ and $f=\frac{1}{\mathrm{2\pi}}\sqrt{\frac{k}{m}}$, where $m$ is the mass of the system.

- Displacement in simple harmonic motion as a function of time is given by $x(t)=X\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\frac{\mathrm{2\pi}t}{T}.$
- The velocity is given by $v(t)=-{v}_{\text{max}}\text{sin}\frac{\mathrm{2\pi}\text{t}}{T}$, where ${v}_{\text{max}}=\sqrt{k/m}X$.
- The acceleration is found to be $a(t)=-\frac{\mathrm{kX}}{m}\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\frac{\mathrm{2\pi}t}{T}.$

# Conceptual Questions

What conditions must be met to produce simple harmonic motion?

(a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion?

(b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?

Give an example of a simple harmonic oscillator, specifically noting how its frequency is independent of amplitude.

Explain why you expect an object made of a stiff material to vibrate at a higher frequency than a similar object made of a spongy material.

As you pass a freight truck with a trailer on a highway, you notice that its trailer is bouncing up and down slowly. Is it more likely that the trailer is heavily loaded or nearly empty? Explain your answer.

Some people modify cars to be much closer to the ground than when manufactured. Should they install stiffer springs? Explain your answer.

# Problems & Exercises

A type of cuckoo clock keeps time by having a mass bouncing on a spring, usually something cute like a cherub in a chair. What force constant is needed to produce a period of 0.500 s for a 0.0150-kg mass?

$2\text{.}\text{37}\phantom{\rule{0.25em}{0ex}}\text{N/m}$

If the spring constant of a simple harmonic oscillator is doubled, by what factor will the mass of the system need to change in order for the frequency of the motion to remain the same?

A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s. How much mass must be added to the object to change the period to 2.00 s?

0.389 kg

By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?

Suppose you attach the object with mass $m$ to a vertical spring originally at rest, and let it bounce up and down. You release the object from rest at the spring’s original rest length. (a) Show that the spring exerts an upward force of $2.00\phantom{\rule{0.25em}{0ex}}\mathrm{mg}$ on the object at its lowest point. (b) If the spring has a force constant of $\text{10}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{N/m}$ and a 0.25-kg-mass object is set in motion as described, find the amplitude of the oscillations. (c) Find the maximum velocity.

A diver on a diving board is undergoing simple harmonic motion. Her mass is 55.0 kg and the period of her motion is 0.800 s. The next diver is a male whose period of simple harmonic oscillation is 1.05 s. What is his mass if the mass of the board is negligible?

94.7 kg

Suppose a diving board with no one on it bounces up and down in a simple harmonic motion with a frequency of 4.00 Hz. The board has an effective mass of 10.0 kg. What is the frequency of the simple harmonic motion of a 75.0-kg diver on the board?

The device pictured in [link] entertains infants while keeping them from wandering. The child bounces in a harness suspended from a door frame by a spring constant.

(a) If the spring stretches 0.250 m while supporting an 8.0-kg child, what is its spring constant?

(b) What is the time for one complete bounce of this child? (c) What is the child’s maximum velocity if the amplitude of her bounce is 0.200 m?

A 90.0-kg skydiver hanging from a parachute bounces up and down with a period of 1.50 s. What is the new period of oscillation when a second skydiver, whose mass is 60.0 kg, hangs from the legs of the first, as seen in [link].

1.94 s

### Tập tin đính kèm

- mass-spring-lab_en.jar

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation