# College Physics

Science and Technology## Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated

We know from the second law of thermodynamics that a heat engine cannot be 100% efficient, since there must always be some heat transfer ${Q}_{\text{c}}$ to the environment, which is often called waste heat. How efficient, then, can a heat engine be? This question was answered at a theoretical level in 1824 by a young French engineer, Sadi Carnot (1796–1832), in his study of the then-emerging heat engine technology crucial to the Industrial Revolution. He devised a theoretical cycle, now called the Carnot cycle, which is the most efficient cyclical process possible. The second law of thermodynamics can be restated in terms of the Carnot cycle, and so what Carnot actually discovered was this fundamental law. Any heat engine employing the Carnot cycle is called a Carnot engine.

What is crucial to the Carnot cycle—and, in fact, defines it—is that only reversible processes are used. Irreversible processes involve dissipative factors, such as friction and turbulence. This increases heat transfer ${Q}_{\text{c}}$ to the environment and reduces the efficiency of the engine. Obviously, then, reversible processes are superior.

[link] shows the $\text{PV}$ diagram for a Carnot cycle. The cycle comprises two isothermal and two adiabatic processes. Recall that both isothermal and adiabatic processes are, in principle, reversible.

Carnot also determined the efficiency of a perfect heat engine—that is, a Carnot engine. It is always true that the efficiency of a cyclical heat engine is given by:

What Carnot found was that for a perfect heat engine, the ratio ${Q}_{\text{c}}/{Q}_{\text{h}}$ equals the ratio of the absolute temperatures of the heat reservoirs. That is, ${Q}_{\text{c}}/{Q}_{\text{h}}={T}_{\text{c}}/{T}_{\text{h}}$ for a Carnot engine, so that the maximum or Carnot efficiency ${\mathrm{Eff}}_{\text{C}}$ is given by

where ${T}_{\text{h}}$ and ${T}_{\text{c}}$ are in kelvins (or any other absolute temperature scale). No real heat engine can do as well as the Carnot efficiency—an actual efficiency of about 0.7 of this maximum is usually the best that can be accomplished. But the ideal Carnot engine, like the drinking bird above, while a fascinating novelty, has zero power. This makes it unrealistic for any applications.

Carnot’s interesting result implies that 100% efficiency would be possible only if ${T}_{\text{c}}=\mathrm{0\; K}$ —that is, only if the cold reservoir were at absolute zero, a practical and theoretical impossibility. But the physical implication is this—the only way to have all heat transfer go into doing work is to remove *all* thermal energy, and this requires a cold reservoir at absolute zero.

It is also apparent that the greatest efficiencies are obtained when the ratio ${T}_{\text{c}}/{T}_{\text{h}}$ is as small as possible. Just as discussed for the Otto cycle in the previous section, this means that efficiency is greatest for the highest possible temperature of the hot reservoir and lowest possible temperature of the cold reservoir. (This setup increases the area inside the closed loop on the $\text{PV}$ diagram; also, it seems reasonable that the greater the temperature difference, the easier it is to divert the heat transfer to work.) The actual reservoir temperatures of a heat engine are usually related to the type of heat source and the temperature of the environment into which heat transfer occurs. Consider the following example.

A nuclear power reactor has pressurized water at $\text{300}\text{\xba}\text{C}$. (Higher temperatures are theoretically possible but practically not, due to limitations with materials used in the reactor.) Heat transfer from this water is a complex process (see [link]). Steam, produced in the steam generator, is used to drive the turbine-generators. Eventually the steam is condensed to water at $\text{27}\text{\xba}\text{C}$ and then heated again to start the cycle over. Calculate the maximum theoretical efficiency for a heat engine operating between these two temperatures.

**Strategy**

Since temperatures are given for the hot and cold reservoirs of this heat engine, ${\mathrm{Eff}}_{\text{C}}=1-\frac{{T}_{\text{c}}}{{T}_{\text{h}}}$ can be used to calculate the Carnot (maximum theoretical) efficiency. Those temperatures must first be converted to kelvins.

**Solution**

The hot and cold reservoir temperatures are given as $\text{300}\text{\xba}\text{C}$ and $\text{27}\text{.}0\text{\xba}\text{C}$, respectively. In kelvins, then, ${T}_{\text{h}}=\text{573 K}$ and ${T}_{\text{c}}=\text{300 K}$, so that the maximum efficiency is

Thus,

**Discussion**

A typical nuclear power station’s actual efficiency is about 35%, a little better than 0.7 times the maximum possible value, a tribute to superior engineering. Electrical power stations fired by coal, oil, and natural gas have greater actual efficiencies (about 42%), because their boilers can reach higher temperatures and pressures. The cold reservoir temperature in any of these power stations is limited by the local environment. [link] shows (a) the exterior of a nuclear power station and (b) the exterior of a coal-fired power station. Both have cooling towers into which water from the condenser enters the tower near the top and is sprayed downward, cooled by evaporation.

Since all real processes are irreversible, the actual efficiency of a heat engine can never be as great as that of a Carnot engine, as illustrated in [link](a). Even with the best heat engine possible, there are always dissipative processes in peripheral equipment, such as electrical transformers or car transmissions. These further reduce the overall efficiency by converting some of the engine’s work output back into heat transfer, as shown in [link](b).

# Section Summary

- The Carnot cycle is a theoretical cycle that is the most efficient cyclical process possible. Any engine using the Carnot cycle, which uses only reversible processes (adiabatic and isothermal), is known as a Carnot engine.
- Any engine that uses the Carnot cycle enjoys the maximum theoretical efficiency.
- While Carnot engines are ideal engines, in reality, no engine achieves Carnot’s theoretical maximum efficiency, since dissipative processes, such as friction, play a role. Carnot cycles without heat loss may be possible at absolute zero, but this has never been seen in nature.

# Conceptual Questions

Think about the drinking bird at the beginning of this section ([link]). Although the bird enjoys the theoretical maximum efficiency possible, if left to its own devices over time, the bird will cease “drinking.” What are some of the dissipative processes that might cause the bird’s motion to cease?

Can improved engineering and materials be employed in heat engines to reduce heat transfer into the environment? Can they eliminate heat transfer into the environment entirely?

Does the second law of thermodynamics alter the conservation of energy principle?

# Problem Exercises

A certain gasoline engine has an efficiency of 30.0%. What would the hot reservoir temperature be for a Carnot engine having that efficiency, if it operates with a cold reservoir temperature of $2\text{00}\text{\xba}\text{C}$?

$\text{403}\text{\xba}\text{C}$

A gas-cooled nuclear reactor operates between hot and cold reservoir temperatures of $\text{700}\text{\xba}\text{C}$ and $\text{27}\text{.}0\text{\xba}\text{C}$. (a) What is the maximum efficiency of a heat engine operating between these temperatures? (b) Find the ratio of this efficiency to the Carnot efficiency of a standard nuclear reactor (found in [link]).

(a) What is the hot reservoir temperature of a Carnot engine that has an efficiency of 42.0% and a cold reservoir temperature of $\text{27}\text{.}0\text{\xba}\text{C}$? (b) What must the hot reservoir temperature be for a real heat engine that achieves 0.700 of the maximum efficiency, but still has an efficiency of 42.0% (and a cold reservoir at $\text{27}\text{.}0\text{\xba}\text{C}$)? (c) Does your answer imply practical limits to the efficiency of car gasoline engines?

(a) $2\text{44}\text{\xba}\text{C}$

(b) $\text{477}\text{\xba}\text{C}$

(c)Yes, since automobiles engines cannot get too hot without overheating, their efficiency is limited.

Steam locomotives have an efficiency of 17.0% and operate with a hot steam temperature of $\text{425}\text{\xba}\text{C}$. (a) What would the cold reservoir temperature be if this were a Carnot engine? (b) What would the maximum efficiency of this steam engine be if its cold reservoir temperature were $\text{150}\text{\xba}\text{C}$?

Practical steam engines utilize $\text{450}\text{\xba}\text{C}$ steam, which is later exhausted at $\text{270}\text{\xba}\text{C}$. (a) What is the maximum efficiency that such a heat engine can have? (b) Since $\text{270}\text{\xba}\text{C}$ steam is still quite hot, a second steam engine is sometimes operated using the exhaust of the first. What is the maximum efficiency of the second engine if its exhaust has a temperature of $\text{150}\text{\xba}\text{C}$? (c) What is the overall efficiency of the two engines? (d) Show that this is the same efficiency as a single Carnot engine operating between $\text{450}\text{\xba}\text{C}$ and $\text{150}\text{\xba}\text{C}$. Explicitly show how you follow the steps in the Problem-Solving Strategies for Thermodynamics.

(a) ${\mathit{\text{Eff}}}_{\text{1}}=1-\frac{{T}_{\text{c,1}}}{{T}_{\text{h,1}}}=1-\frac{\text{543 K}}{\text{723 K}}=0\text{.}\text{249}\phantom{\rule{0.25em}{0ex}}\text{or}\phantom{\rule{0.25em}{0ex}}\text{24}\text{.}\mathrm{9\%}\text{}$

(b) ${\mathit{\text{Eff}}}_{2}=1-\frac{\text{423 K}}{\text{543 K}}=0\text{.}\text{221}\phantom{\rule{0.25em}{0ex}}\text{or}\phantom{\rule{0.25em}{0ex}}\text{22}\text{.}\mathrm{1\%}\text{}$

(c) $\begin{array}{l}{\mathit{\text{Eff}}}_{1}=1-\frac{{T}_{\text{c,1}}}{{T}_{\text{h,1}}}\Rightarrow {T}_{\text{c,1}}={T}_{\text{h,1}}\left(1,-,{\mathit{\text{eff}}}_{1}\right)\end{array}$ $\begin{array}{l}\text{similarly,}\phantom{\rule{0.25em}{0ex}}{T}_{\text{c,2}}={T}_{\text{h,2}}\left(1-{\mathit{\text{Eff}}}_{2}\right)\end{array}$ $\begin{array}{l}\text{using}\phantom{\rule{0.25em}{0ex}}{T}_{\text{h,2}}={T}_{\text{c,1}}\phantom{\rule{0.25em}{0ex}}\text{in}\phantom{\rule{0.25em}{0ex}}\text{above}\phantom{\rule{0.25em}{0ex}}\text{equation}\phantom{\rule{0.25em}{0ex}}\text{gives}\end{array}$ $\begin{array}{l}{T}_{\text{c,2}}={T}_{\text{h,1}}\left(1-{\mathit{\text{Eff}}}_{1}\right)\left(1-{\mathit{\text{Eff}}}_{2}\right)\equiv {T}_{\text{h,1}}\left(1-{\mathrm{Eff}}_{\text{overall}}\right)\\ \therefore \left(1-{\mathrm{Eff}}_{\text{overall}}\right)=\left(1-{\mathit{\text{Eff}}}_{1}\right)\left(1-{\mathit{\text{Eff}}}_{2}\right)\\ {\mathrm{Eff}}_{\text{overall}}=1-\left(1-0\text{.}\text{249}\right)\left(1-0\text{.}\text{221}\right)=\text{41}\text{.}\mathrm{5\%}\text{}\end{array}$

(d) ${\text{Eff}}_{\text{overall}}=1-\frac{\text{423 K}}{\text{723 K}}=0\text{.}\text{415}\phantom{\rule{0.25em}{0ex}}\text{or}\phantom{\rule{0.25em}{0ex}}\text{41}\text{.}\mathrm{5\%}\text{}$

A coal-fired electrical power station has an efficiency of 38%. The temperature of the steam leaving the boiler is $\text{550}\text{\xba}\text{C}$. What percentage of the maximum efficiency does this station obtain? (Assume the temperature of the environment is $\text{20}\text{\xba}\text{C}$.)

Would you be willing to financially back an inventor who is marketing a device that she claims has 25 kJ of heat transfer at 600 K, has heat transfer to the environment at 300 K, and does 12 kJ of work? Explain your answer.

The heat transfer to the cold reservoir is ${Q}_{\text{c}}={Q}_{\text{h}}-W=\text{25}\phantom{\rule{0.25em}{0ex}}\text{kJ}-\text{12}\phantom{\rule{0.25em}{0ex}}\text{kJ}=\text{13}\phantom{\rule{0.25em}{0ex}}\text{kJ}$, so the efficiency is $\mathit{Eff}=1-\frac{{Q}_{\text{c}}}{{Q}_{\text{h}}}=1-\frac{\text{13}\phantom{\rule{0.25em}{0ex}}\text{kJ}}{\text{25}\phantom{\rule{0.25em}{0ex}}\text{kJ}}=0\text{.}\text{48}$. The Carnot efficiency is ${\mathit{\text{Eff}}}_{\text{C}}=1-\frac{{T}_{\text{c}}}{{T}_{\text{h}}}=1-\frac{\text{300}\phantom{\rule{0.25em}{0ex}}\text{K}}{\text{600}\phantom{\rule{0.25em}{0ex}}\text{K}}=0\text{.}\text{50}$. The actual efficiency is 96% of the Carnot efficiency, which is much higher than the best-ever achieved of about 70%, so her scheme is likely to be fraudulent.

**Unreasonable Results**

(a) Suppose you want to design a steam engine that has heat transfer to the environment at $\text{270\xbaC}$ and has a Carnot efficiency of 0.800. What temperature of hot steam must you use? (b) What is unreasonable about the temperature? (c) Which premise is unreasonable?

**Unreasonable Results**

Calculate the cold reservoir temperature of a steam engine that uses hot steam at $\text{450}\text{\xba}\text{C}$ and has a Carnot efficiency of 0.700. (b) What is unreasonable about the temperature? (c) Which premise is unreasonable?

(a) $\text{\u201356.3\xbaC}$

(b) The temperature is too cold for the output of a steam engine (the local environment). It is below the freezing point of water.

(c) The assumed efficiency is too high.

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Introduction to Work, Energy, and Energy Resources
- Work: The Scientific Definition
- Kinetic Energy and the Work-Energy Theorem
- Gravitational Potential Energy
- Conservative Forces and Potential Energy
- Nonconservative Forces
- Conservation of Energy
- Power
- Work, Energy, and Power in Humans
- World Energy Use

- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Introduction to Fluid Statics
- What Is a Fluid?
- Density
- Pressure
- Variation of Pressure with Depth in a Fluid
- Pascal’s Principle
- Gauge Pressure, Absolute Pressure, and Pressure Measurement
- Archimedes’ Principle
- Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
- Pressures in the Body

- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Introduction to Electric Potential and Electric Energy
- Electric Potential Energy: Potential Difference
- Electric Potential in a Uniform Electric Field
- Electrical Potential Due to a Point Charge
- Equipotential Lines
- Capacitors and Dielectrics
- Capacitors in Series and Parallel
- Energy Stored in Capacitors

- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation