Continuous Distribution
Class Time:
Names:
- The student will compare and contrast empirical data from a random number generator with the uniform distribution.
Student Learning Outcomes
Collect the DataUse a random number generator to generate 50 values between zero and one (inclusive). List them in [link]. Round the numbers to four decimal places or set the calculator MODE to four places.
- Complete the table.
__________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ - Calculate the following:
- _______
- s = _______
- first quartile = _______
- third quartile = _______
- median = _______
- Construct a histogram of the empirical data. Make eight bars.
- Construct a histogram of the empirical data. Make five bars.
Organize the Data
- In two to three complete sentences, describe the shape of each graph. (Keep it simple. Does the graph go straight across, does it have a V shape, does it have a hump in the middle or at either end, and so on. One way to help you determine a shape is to draw a smooth curve roughly through the top of the bars.)
- Describe how changing the number of bars might change the shape.
Describe the Data
- In words, X = _____________________________________.
- The theoretical distribution of X is X ~ U(0,1).
- In theory, based upon the distribution X ~ U(0,1), complete the following.
- μ = ______
- σ = ______
- first quartile = ______
- third quartile = ______
- median = __________
- Are the empirical values (the data) in the section titled Collect the Data close to the corresponding theoretical values? Why or why not?
Theoretical Distribution
- Construct a box plot of the data. Be sure to use a ruler to scale accurately and draw straight edges.
- Do you notice any potential outliers? If so, which values are they? Either way, justify your answer numerically. (Recall that any DATA that are less than Q1 – 1.5(IQR) or more than Q3 + 1.5(IQR) are potential outliers. IQR means interquartile range.)
Plot the Data
- For each of the following parts, use a complete sentence to comment on how the value obtained from the data compares to the theoretical value you expected from the distribution in the section titled Theoretical Distribution.
- minimum value: _______
- first quartile: _______
- median: _______
- third quartile: _______
- maximum value: _______
- width of IQR: _______
- overall shape: _______
- Based on your comments in the section titled Collect the Data, how does the box plot fit or not fit what you would expect of the distribution in the section titled Theoretical Distribution?
Compare the Data
- Suppose that the number of values generated was 500, not 50. How would that affect what you would expect the empirical data to be and the shape of its graph to look like?
Discussion Question
Tải về
Mục lục
- Introductory Statistics
- Preface
- Sampling and Data
- Descriptive Statistics
- Introduction
- Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
- Histograms, Frequency Polygons, and Time Series Graphs
- Measures of the Location of the Data
- Box Plots
- Measures of the Center of the Data
- Skewness and the Mean, Median, and Mode
- Measures of the Spread of the Data
- Descriptive Statistics
- Probability Topics
- Discrete Random Variables
- Introduction
- Probability Distribution Function (PDF) for a Discrete Random Variable
- Mean or Expected Value and Standard Deviation
- Binomial Distribution
- Geometric Distribution
- Hypergeometric Distribution
- Poisson Distribution
- Discrete Distribution (Playing Card Experiment)
- Discrete Distribution (Lucky Dice Experiment)
- Continuous Random Variables
- The Normal Distribution
- The Central Limit Theorem
- Confidence Intervals
- Hypothesis Testing with One Sample
- Hypothesis Testing with Two Samples
- The Chi-Square Distribution
- Linear Regression and Correlation
- F Distribution and One-Way ANOVA
- Appendix A: Review Exercises (Ch 3-13)
- Appendix B: Practice Tests (1-4) and Final Exams
- Appendix C: Data Sets
- Appendix D: Group and Partner Projects
- Appendix E: Solution Sheets
- Appendix F: Mathematical Phrases, Symbols, and Formulas
- Appendix G: Notes for the TI-83, 83+, 84, 84+ Calculators
- Appendix H: Tables
Nội dung tương tự