If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as seen in [link]. In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know that a door opens slowly if we push too close to its hinges. Furthermore, we know that the more massive the door, the more slowly it opens. The first example implies that the farther the force is applied from the pivot, the greater the angular acceleration; another implication is that angular acceleration is inversely proportional to mass. These relationships should seem very similar to the familiar relationships among force, mass, and acceleration embodied in Newton’s second law of motion. There are, in fact, precise rotational analogs to both force and mass.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a force $F$ on a point mass $m$ that is at a distance $r$ from a pivot point, as shown in [link]. Because the force is perpendicular to $r$, an acceleration $a=\frac{F}{m}$ is obtained in the direction of $F$. We can rearrange this equation such that $F=\text{ma}$ and then look for ways to relate this expression to expressions for rotational quantities. We note that $a=\mathrm{r\alpha}$, and we substitute this expression into $F=\text{ma}$, yielding

Recall that torque is the turning effectiveness of a force. In this case, because $\mathbf{\text{F}}$ is perpendicular to $r$, torque is simply $\tau =\mathrm{Fr}$. So, if we multiply both sides of the equation above by $r$, we get torque on the left-hand side. That is,

or

This last equation is the rotational analog of Newton’s second law ($F=\text{ma}$), where torque is analogous to force, angular acceleration is analogous to translational acceleration, and ${\text{mr}}^{2}$ is analogous to mass (or inertia). The quantity ${\text{mr}}^{2}$ is called the rotational inertia or moment of inertia of a point mass $m$ a distance $r$ from the center of rotation.

# Rotational Inertia and Moment of Inertia

Before we can consider the rotation of anything other than a point mass like the one in [link], we must extend the idea of rotational inertia to all types of objects. To expand our concept of rotational inertia, we define the moment of inertia $I$ of an object to be the sum of ${\text{mr}}^{2}$ for all the point masses of which it is composed. That is, $I=\sum {\text{mr}}^{2}$. Here $I$ is analogous to $m$ in translational motion. Because of the distance $r$, the moment of inertia for any object depends on the chosen axis. Actually, calculating $I$ is beyond the scope of this text except for one simple case—that of a hoop, which has all its mass at the same distance from its axis. A hoop’s moment of inertia around its axis is therefore ${\text{MR}}^{2}$, where $M$ is its total mass and $R$ its radius. (We use $M$ and $R$ for an entire object to distinguish them from $m$ and $r$ for point masses.) In all other cases, we must consult [link] (note that the table is piece of artwork that has shapes as well as formulae) for formulas for $I$ that have been derived from integration over the continuous body. Note that $I$ has units of mass multiplied by distance squared ($\text{kg}\cdot {\text{m}}^{2}$), as we might expect from its definition.

The general relationship among torque, moment of inertia, and angular acceleration is

or

where net $\tau $ is the total torque from all forces relative to a chosen axis. For simplicity, we will only consider torques exerted by forces in the plane of the rotation. Such torques are either positive or negative and add like ordinary numbers. The relationship in $\tau =\mathrm{I\alpha},\alpha =\frac{\text{net \tau}}{I}$ is the rotational analog to Newton’s second law and is very generally applicable. This equation is actually valid for *any* torque, applied to *any* object, relative to *any* axis.

As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child pushes on a merry-go-round, the faster it accelerates. Furthermore, the more massive a merry-go-round, the slower it accelerates for the same torque. The basic relationship between moment of inertia and angular acceleration is that the larger the moment of inertia, the smaller is the angular acceleration. But there is an additional twist. The moment of inertia depends not only on the mass of an object, but also on its *distribution* of mass relative to the axis around which it rotates. For example, it will be much easier to accelerate a merry-go-round full of children if they stand close to its axis than if they all stand at the outer edge. The mass is the same in both cases; but the moment of inertia is much larger when the children are at the edge.

Consider the father pushing a playground merry-go-round in [link]. He exerts a force of 250 N at the edge of the 50.0-kg merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced (a) when no one is on the merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a uniform disk with negligible retarding friction.

**Strategy**

Angular acceleration is given directly by the expression $\alpha =\frac{\text{net \tau}}{I}$ :

To solve for $\alpha $, we must first calculate the torque $\tau $ (which is the same in both cases) and moment of inertia $I$ (which is greater in the second case). To find the torque, we note that the applied force is perpendicular to the radius and friction is negligible, so that

**Solution for (a)**

The moment of inertia of a solid disk about this axis is given in [link] to be

where $M=\text{50.0 kg}$ and $R=\text{1.50 m}$, so that

Now, after we substitute the known values, we find the angular acceleration to be

**Solution for (b)**

We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater when the child is on the merry-go-round. To find the total moment of inertia $I$, we first find the child’s moment of inertia ${I}_{\text{c}}$ by considering the child to be equivalent to a point mass at a distance of 1.25 m from the axis. Then,

The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same axis). To justify this sum to yourself, examine the definition of $I$:

Substituting known values into the equation for $\alpha $ gives

**Discussion**

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected. The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an angular velocity of 13.3 rad/s when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case. Summer Olympics, here he comes! Confirmation of these numbers is left as an exercise for the reader.

# Section Summary

- The farther the force is applied from the pivot, the greater is the angular acceleration; angular acceleration is inversely proportional to mass.
- If we exert a force $F$ on a point mass $m$ that is at a distance $r$ from a pivot point and because the force is perpendicular to $r$, an acceleration $\text{a = F/m}$ is obtained in the direction of $F$. We can rearrange this equation such that $\mathrm{F\; =\; ma}\text{,}$
and then look for ways to relate this expression to expressions for rotational quantities. We note that $\mathrm{a\; =\; r\alpha}$, and we substitute this expression into $\mathrm{F=ma}$, yielding

$\mathrm{F=mr\alpha}$ - Torque is the turning effectiveness of a force. In this case, because $F$ is perpendicular to $r$, torque is simply $\tau =\mathit{rF}$. If we multiply both sides of the equation above by $r$, we get torque on the left-hand side. That is,
$\text{rF}={\text{mr}}^{2}\alpha $
or

$\tau ={\text{mr}}^{2}\alpha \text{.}$ - The moment of inertia $I$ of an object is the sum of ${\text{MR}}^{2}$ for all the point masses of which it is composed. That is,
$I=\sum {\text{mr}}^{2}\text{.}$
- The general relationship among torque, moment of inertia, and angular acceleration is
$\tau =\mathrm{I\alpha}$
or

$\begin{array}{}\alpha =\frac{\text{net \tau}}{I}\cdot \\ \end{array}$

# Conceptual Questions

The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is ${\mathit{ML}}^{2}\text{/3}$. Why is this moment of inertia greater than it would be if you spun a point mass $M$ at the location of the center of mass of the rod (at $L/2$ )? (That would be ${\mathit{ML}}^{2}\text{/4}$.)

Why is the moment of inertia of a hoop that has a mass $M$ and a radius $R$ greater than the moment of inertia of a disk that has the same mass and radius? Why is the moment of inertia of a spherical shell that has a mass $M$ and a radius $R$ greater than that of a solid sphere that has the same mass and radius?

Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small torque.

While reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s frame?

A ball slides up a frictionless ramp. It is then rolled without slipping and with the same initial velocity up another frictionless ramp (with the same slope angle). In which case does it reach a greater height, and why?

# Problems & Exercises

This problem considers additional aspects of example Calculating the Effect of Mass Distribution on a Merry-Go-Round. (a) How long does it take the father to give the merry-go-round and child an angular velocity of 1.50 rad/s? (b) How many revolutions must he go through to generate this velocity? (c) If he exerts a slowing force of 300 N at a radius of 1.35 m, how long would it take him to stop them?

(a) 0.338 s

(b) 0.0403 rev

(c) 0.313 s

Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximately a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.

The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of $\text{2.00}\times {\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{N}$ with an effective perpendicular lever arm of 3.00 cm, producing an angular acceleration of the forearm of $\text{120}\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}$. What is the moment of inertia of the boxer’s forearm?

$\text{0.50 kg}\cdot {\text{m}}^{2}$

A soccer player extends her lower leg in a kicking motion by exerting a force with the muscle above the knee in the front of her leg. She produces an angular acceleration of $\mathrm{30.00\; rad/}{\text{s}}^{2}$ and her lower leg has a moment of inertia of $\text{0.750 kg}\cdot {\text{m}}^{2}$. What is the force exerted by the muscle if its effective perpendicular lever arm is 1.90 cm?

Suppose you exert a force of 180 N tangential to a 0.280-m-radius 75.0-kg grindstone (a solid disk).

(a)What torque is exerted? (b) What is the angular acceleration assuming negligible opposing friction? (c) What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

(a) $\mathrm{50.4\; N}\cdot \text{m}$

(b) $\text{17.1}\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}$

(c) $17.0\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}$

Consider the 12.0 kg motorcycle wheel shown in [link]. Assume it to be approximately an annular ring with an inner radius of 0.280 m and an outer radius of 0.330 m. The motorcycle is on its center stand, so that the wheel can spin freely. (a) If the drive chain exerts a force of 2200 N at a radius of 5.00 cm, what is the angular acceleration of the wheel? (b) What is the tangential acceleration of a point on the outer edge of the tire? (c) How long, starting from rest, does it take to reach an angular velocity of 80.0 rad/s?

Zorch, an archenemy of Superman, decides to slow Earth’s rotation to once per 28.0 h by exerting an opposing force at and parallel to the equator. Superman is not immediately concerned, because he knows Zorch can only exert a force of $4.00\times {\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}\text{N}$ (a little greater than a Saturn V rocket’s thrust). How long must Zorch push with this force to accomplish his goal? (This period gives Superman time to devote to other villains.) Explicitly show how you follow the steps found in Problem-Solving Strategy for Rotational Dynamics.

$3\text{.}\text{96}\times {\text{10}}^{\text{18}}\phantom{\rule{0.25em}{0ex}}\text{s}$

or $1.26\times {\text{10}}^{\text{11}}\phantom{\rule{0.25em}{0ex}}\text{y}$

An automobile engine can produce 200 N ∙ m of torque. Calculate the angular acceleration produced if 95.0% of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0 kg disk that has a 0.180 m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.

Starting with the formula for the moment of inertia of a rod rotated around an axis through one end perpendicular to its length $(I={\mathrm{M\ell}}^{2}/3)$ , prove that the moment of inertia of a rod rotated about an axis through its center perpendicular to its length is $I={\mathrm{M\ell}}^{2}/12$. You will find the graphics in [link] useful in visualizing these rotations.

$\begin{array}{c}{I}_{\text{end}}={I}_{\text{center}}+m{\left(\frac{l}{2}\right)}^{2}\\ \text{Thus,}\phantom{\rule{0.25em}{0ex}}{I}_{\text{center}}={I}_{\text{end}}-\frac{1}{4}{\text{ml}}^{2}=\frac{1}{3}{\text{ml}}^{2}-\frac{1}{4}{\text{ml}}^{2}=\frac{1}{\text{12}}{\text{ml}}^{2}\end{array}$

**Unreasonable Results**

A gymnast doing a forward flip lands on the mat and exerts a 500-N ∙ m torque to slow and then reverse her angular velocity. Her initial angular velocity is 10.0 rad/s, and her moment of inertia is $0.050\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}$. (a) What time is required for her to exactly reverse her spin? (b) What is unreasonable about the result? (c) Which premises are unreasonable or inconsistent?

(a) 2.0 ms

(b) The time interval is too short.

(c) The moment of inertia is much too small, by one to two orders of magnitude. A torque of $\text{500 N}\cdot \text{m}$ is reasonable.

**Unreasonable Results**

An advertisement claims that an 800-kg car is aided by its 20.0-kg flywheel, which can accelerate the car from rest to a speed of 30.0 m/s. The flywheel is a disk with a 0.150-m radius. (a) Calculate the angular velocity the flywheel must have if 95.0% of its rotational energy is used to get the car up to speed. (b) What is unreasonable about the result? (c) Which premise is unreasonable or which premises are inconsistent?

(a) 17,500 rpm

(b) This angular velocity is very high for a disk of this size and mass. The radial acceleration at the edge of the disk is > 50,000 gs.

(c) Flywheel mass and radius should both be much greater, allowing for a lower spin rate (angular velocity).

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation