# Inductors

Induction is the process in which an emf is induced by changing magnetic flux. Many examples have been discussed so far, some more effective than others. Transformers, for example, are designed to be particularly effective at inducing a desired voltage and current with very little loss of energy to other forms. Is there a useful physical quantity related to how “effective” a given device is? The answer is yes, and that physical quantity is called inductance.

Mutual inductance is the effect of Faraday’s law of induction for one device upon another, such as the primary coil in transmitting energy to the secondary in a transformer. See [link], where simple coils induce emfs in one another.

In the many cases where the geometry of the devices is fixed, flux is changed by varying current. We therefore concentrate on the rate of change of current, $\mathrm{\Delta}I\mathrm{/\Delta}t$, as the cause of induction. A change in the current ${I}_{1}$ in one device, coil 1 in the figure, induces an ${\text{emf}}_{2}$ in the other. We express this in equation form as

where $M$ is defined to be the mutual inductance between the two devices. The minus sign is an expression of Lenz’s law. The larger the mutual inductance $M$, the more effective the coupling. For example, the coils in [link] have a small $M$ compared with the transformer coils in [link]. Units for $M$ are $(\text{V}\cdot \text{s})\text{/A}=\Omega \cdot \text{s}$, which is named a henry (H), after Joseph Henry. That is, $\mathrm{1\; H}=1\phantom{\rule{0.25em}{0ex}}\Omega \cdot \text{s}$.

Nature is symmetric here. If we change the current ${I}_{2}$ in coil 2, we induce an ${\text{emf}}_{1}$ in coil 1, which is given by

where $M$ is the same as for the reverse process. Transformers run backward with the same effectiveness, or mutual inductance $M$*.*

A large mutual inductance $M$ may or may not be desirable. We want a transformer to have a large mutual inductance. But an appliance, such as an electric clothes dryer, can induce a dangerous emf on its case if the mutual inductance between its coils and the case is large. One way to reduce mutual inductance $M$ is to counterwind coils to cancel the magnetic field produced. (See [link].)

Self-inductance, the effect of Faraday’s law of induction of a device on itself, also exists. When, for example, current through a coil is increased, the magnetic field and flux also increase, inducing a counter emf, as required by Lenz’s law. Conversely, if the current is decreased, an emf is induced that opposes the decrease. Most devices have a fixed geometry, and so the change in flux is due entirely to the change in current $\mathrm{\Delta}I$ through the device. The induced emf is related to the physical geometry of the device and the rate of change of current. It is given by

where $L$ is the self-inductance of the device. A device that exhibits significant self-inductance is called an inductor, and given the symbol in [link].

The minus sign is an expression of Lenz’s law, indicating that emf opposes the change in current. Units of self-inductance are henries (H) just as for mutual inductance. The larger the self-inductance $L$ of a device, the greater its opposition to any change in current through it. For example, a large coil with many turns and an iron core has a large $L$ and will not allow current to change quickly. To avoid this effect, a small $L$ must be achieved, such as by counterwinding coils as in [link].A 1 H inductor is a large inductor. To illustrate this, consider a device with $L=1\text{.}\mathrm{0\; H}$ that has a 10 A current flowing through it. What happens if we try to shut off the current rapidly, perhaps in only 1.0 ms? An emf, given by $\text{emf}=-L(\mathrm{\Delta}I/\mathrm{\Delta}t)$, will oppose the change. Thus an emf will be induced given by $\text{emf}=-L(\mathrm{\Delta}I/\mathrm{\Delta}t)=(1\text{.}\mathrm{0\; H})[(\text{10 A})/(1\text{.}\mathrm{0\; ms})]=\text{10,000 V}$. The positive sign means this large voltage is in the same direction as the current, opposing its decrease. Such large emfs can cause arcs, damaging switching equipment, and so it may be necessary to change current more slowly.

There are uses for such a large induced voltage. Camera flashes use a battery, two inductors that function as a transformer, and a switching system or oscillator to induce large voltages. (Remember that we need a changing magnetic field, brought about by a changing current, to induce a voltage in another coil.) The oscillator system will do this many times as the battery voltage is boosted to over one thousand volts. (You may hear the high pitched whine from the transformer as the capacitor is being charged.) A capacitor stores the high voltage for later use in powering the flash. (See [link].)

It is possible to calculate $L$ for an inductor given its geometry (size and shape) and knowing the magnetic field that it produces. This is difficult in most cases, because of the complexity of the field created. So in this text the inductance $L$ is usually a given quantity. One exception is the solenoid, because it has a very uniform field inside, a nearly zero field outside, and a simple shape. It is instructive to derive an equation for its inductance. We start by noting that the induced emf is given by Faraday’s law of induction as $\text{emf}=-N(\mathrm{\Delta}\Phi /\mathrm{\Delta}t)$ and, by the definition of self-inductance, as $\text{emf}=-L(\mathrm{\Delta}I/\mathrm{\Delta}t)$. Equating these yields

Solving for $L$ gives

This equation for the self-inductance $L$ of a device is always valid. It means that self-inductance $L$ depends on how effective the current is in creating flux; the more effective, the greater $\mathrm{\Delta}\Phi $/ $\mathrm{\Delta}I$ is.

Let us use this last equation to find an expression for the inductance of a solenoid. Since the area $A$ of a solenoid is fixed, the change in flux is $\text{\Delta}\Phi =\text{\Delta}\left(BA\right)=A\text{\Delta}B$. To find $\text{\Delta}B$, we note that the magnetic field of a solenoid is given by $B={\mu}_{0}\text{nI}={\mu}_{0}\frac{\text{NI}}{\ell}$. (Here $n=N/\ell $, where $N$ is the number of coils and $\ell $ is the solenoid’s length.) Only the current changes, so that $\mathrm{\Delta}\Phi =A\mathrm{\Delta}B={\mu}_{0}\text{NA}\frac{\mathrm{\Delta}I}{\ell}$. Substituting $\text{\Delta}\Phi $ into $L=N\frac{\mathrm{\Delta}\Phi}{\mathrm{\Delta}I}$ gives

This simplifies to

This is the self-inductance of a solenoid of cross-sectional area $A$ and length $\ell $. Note that the inductance depends only on the physical characteristics of the solenoid, consistent with its definition.

Calculate the self-inductance of a 10.0 cm long, 4.00 cm diameter solenoid that has 200 coils.

**Strategy**

This is a straightforward application of $L=\frac{{\mu}_{0}{N}^{2}A}{\ell}$, since all quantities in the equation except $L$ are known.

**Solution**

Use the following expression for the self-inductance of a solenoid:

The cross-sectional area in this example is $A={\mathrm{\pi r}}^{2}=(3\text{.}\text{14}\text{.}\text{.}\text{.})(0\text{.0200 m}{)}^{2}=1\text{.}\text{26}\times {\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$, $N$ is given to be 200, and the length $\ell $ is 0.100 m. We know the permeability of free space is ${\mu}_{0}=\mathrm{4\pi}\times {\text{10}}^{\text{\u22127}}\phantom{\rule{0.25em}{0ex}}\text{T}\cdot \text{m/A}$. Substituting these into the expression for $L$ gives

**Discussion**

This solenoid is moderate in size. Its inductance of nearly a millihenry is also considered moderate.

One common application of inductance is used in traffic lights that can tell when vehicles are waiting at the intersection. An electrical circuit with an inductor is placed in the road under the place a waiting car will stop over. The body of the car increases the inductance and the circuit changes sending a signal to the traffic lights to change colors. Similarly, metal detectors used for airport security employ the same technique. A coil or inductor in the metal detector frame acts as both a transmitter and a receiver. The pulsed signal in the transmitter coil induces a signal in the receiver. The self-inductance of the circuit is affected by any metal object in the path. Such detectors can be adjusted for sensitivity and also can indicate the approximate location of metal found on a person. (But they will not be able to detect any plastic explosive such as that found on the “underwear bomber.”) See [link].

# Energy Stored in an Inductor

We know from Lenz’s law that inductances oppose changes in current. There is an alternative way to look at this opposition that is based on energy. Energy is stored in a magnetic field. It takes time to build up energy, and it also takes time to deplete energy; hence, there is an opposition to rapid change. In an inductor, the magnetic field is directly proportional to current and to the inductance of the device. It can be shown that the energy stored in an inductor ${E}_{\text{ind}}$ is given by

This expression is similar to that for the energy stored in a capacitor.

How much energy is stored in the 0.632 mH inductor of the preceding example when a 30.0 A current flows through it?

**Strategy**

The energy is given by the equation ${E}_{\text{ind}}=\frac{1}{2}{\text{LI}}^{2}$, and all quantities except ${E}_{\text{ind}}$ are known.

**Solution**

Substituting the value for $L$ found in the previous example and the given current into ${E}_{\text{ind}}=\frac{1}{2}{\text{LI}}^{2}$ gives

**Discussion**

This amount of energy is certainly enough to cause a spark if the current is suddenly switched off. It cannot be built up instantaneously unless the power input is infinite.

# Section Summary

- Inductance is the property of a device that tells how effectively it induces an emf in another device.
- Mutual inductance is the effect of two devices in inducing emfs in each other.
- A change in current $\mathrm{\Delta}{I}_{1}/\mathrm{\Delta}t$ in one induces an emf ${\text{emf}}_{2}$ in the second:
${\text{emf}}_{2}=-M\frac{\mathrm{\Delta}{I}_{1}}{\mathrm{\Delta}t}\text{,}$where $M$ is defined to be the mutual inductance between the two devices, and the minus sign is due to Lenz’s law.
- Symmetrically, a change in current $\mathrm{\Delta}{I}_{2}/\mathrm{\Delta}t$ through the second device induces an emf ${\text{emf}}_{1}$ in the first:
${\text{emf}}_{1}=-M\frac{\mathrm{\Delta}{I}_{2}}{\mathrm{\Delta}t}\text{,}$where $M$ is the same mutual inductance as in the reverse process.
- Current changes in a device induce an emf in the device itself.
- Self-inductance is the effect of the device inducing emf in itself.
- The device is called an inductor, and the emf induced in it by a change in current through it is
$\text{emf}=-L\frac{\mathrm{\Delta}I}{\mathrm{\Delta}t}\text{,}$where $L$ is the self-inductance of the inductor, and $\mathrm{\Delta}I/\mathrm{\Delta}t$ is the rate of change of current through it. The minus sign indicates that emf opposes the change in current, as required by Lenz’s law.
- The unit of self- and mutual inductance is the henry (H), where $\mathrm{1\; H}=1\; \Omega \cdot \text{s}$.
- The self-inductance $L$ of an inductor is proportional to how much flux changes with current. For an $N$-turn inductor,
$L=N\frac{\mathrm{\Delta}\Phi}{\mathrm{\Delta}I}\text{.}$
- The self-inductance of a solenoid is
$L=\frac{{\mu}_{0}{N}^{2}A}{\ell}\text{(solenoid),}$where $N$ is its number of turns in the solenoid, $A$ is its cross-sectional area, $\ell $ is its length, and ${\text{\mu}}_{0}=\mathrm{4\pi}\times {\text{10}}^{\text{\u22127}}\phantom{\rule{0.25em}{0ex}}\text{T}\cdot \text{m/A}\phantom{\rule{0.10em}{0ex}}$ is the permeability of free space.
- The energy stored in an inductor ${E}_{\text{ind}}$ is
${E}_{\text{ind}}=\frac{1}{2}{\text{LI}}^{2}\text{.}$

# Conceptual Questions

How would you place two identical flat coils in contact so that they had the greatest mutual inductance? The least?

How would you shape a given length of wire to give it the greatest self-inductance? The least?

Verify, as was concluded without proof in [link], that units of $\text{T}\cdot {\text{m}}^{2}/A=\Omega \cdot \text{s}=\text{H}$.

# Problems & Exercises

Two coils are placed close together in a physics lab to demonstrate Faraday’s law of induction. A current of 5.00 A in one is switched off in 1.00 ms, inducing a 9.00 V emf in the other. What is their mutual inductance?

1.80 mH

If two coils placed next to one another have a mutual inductance of 5.00 mH, what voltage is induced in one when the 2.00 A current in the other is switched off in 30.0 ms?

The 4.00 A current through a 7.50 mH inductor is switched off in 8.33 ms. What is the emf induced opposing this?

3.60 V

A device is turned on and 3.00 A flows through it 0.100 ms later. What is the self-inductance of the device if an induced 150 V emf opposes this?

Starting with ${\text{emf}}_{2}=-M\frac{\mathrm{\Delta}{I}_{1}}{\mathrm{\Delta}t}$, show that the units of inductance are $(\text{V}\cdot \text{s})\text{/A}=\Omega \cdot \text{s}$.

Camera flashes charge a capacitor to high voltage by switching the current through an inductor on and off rapidly. In what time must the 0.100 A current through a 2.00 mH inductor be switched on or off to induce a 500 V emf?

A large research solenoid has a self-inductance of 25.0 H. (a) What induced emf opposes shutting it off when 100 A of current through it is switched off in 80.0 ms? (b) How much energy is stored in the inductor at full current? (c) At what rate in watts must energy be dissipated to switch the current off in 80.0 ms? (d) In view of the answer to the last part, is it surprising that shutting it down this quickly is difficult?

(a) 31.3 kV

(b) 125 kJ

(c) 1.56 MW

(d) No, it is not surprising since this power is very high.

(a) Calculate the self-inductance of a 50.0 cm long, 10.0 cm diameter solenoid having 1000 loops. (b) How much energy is stored in this inductor when 20.0 A of current flows through it? (c) How fast can it be turned off if the induced emf cannot exceed 3.00 V?

A precision laboratory resistor is made of a coil of wire 1.50 cm in diameter and 4.00 cm long, and it has 500 turns. (a) What is its self-inductance? (b) What average emf is induced if the 12.0 A current through it is turned on in 5.00 ms (one-fourth of a cycle for 50 Hz AC)? (c) What is its inductance if it is shortened to half its length and counter-wound (two layers of 250 turns in opposite directions)?

(a) 1.39 mH

(b) 3.33 V

(c) Zero

The heating coils in a hair dryer are 0.800 cm in diameter, have a combined length of 1.00 m, and a total of 400 turns. (a) What is their total self-inductance assuming they act like a single solenoid? (b) How much energy is stored in them when 6.00 A flows? (c) What average emf opposes shutting them off if this is done in 5.00 ms (one-fourth of a cycle for 50 Hz AC)?

When the 20.0 A current through an inductor is turned off in 1.50 ms, an 800 V emf is induced, opposing the change. What is the value of the self-inductance?

60.0 mH

How fast can the 150 A current through a 0.250 H inductor be shut off if the induced emf cannot exceed 75.0 V?

**Integrated Concepts**

A very large, superconducting solenoid such as one used in MRI scans, stores 1.00 MJ of energy in its magnetic field when 100 A flows. (a) Find its self-inductance. (b) If the coils “go normal,” they gain resistance and start to dissipate thermal energy. What temperature increase is produced if all the stored energy goes into heating the 1000 kg magnet, given its average specific heat is $\text{200 J/kg\xb7\xbaC}$?

(a) 200 H

(b) $\text{5.00\xbaC}$

**Unreasonable Results**

A 25.0 H inductor has 100 A of current turned off in 1.00 ms. (a) What voltage is induced to oppose this? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Introduction to Work, Energy, and Energy Resources
- Work: The Scientific Definition
- Kinetic Energy and the Work-Energy Theorem
- Gravitational Potential Energy
- Conservative Forces and Potential Energy
- Nonconservative Forces
- Conservation of Energy
- Power
- Work, Energy, and Power in Humans
- World Energy Use

- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Introduction to Fluid Statics
- What Is a Fluid?
- Density
- Pressure
- Variation of Pressure with Depth in a Fluid
- Pascal’s Principle
- Gauge Pressure, Absolute Pressure, and Pressure Measurement
- Archimedes’ Principle
- Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
- Pressures in the Body

- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Introduction to Electric Potential and Electric Energy
- Electric Potential Energy: Potential Difference
- Electric Potential in a Uniform Electric Field
- Electrical Potential Due to a Point Charge
- Equipotential Lines
- Capacitors and Dielectrics
- Capacitors in Series and Parallel
- Energy Stored in Capacitors

- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation