After studying this chapter, you will be able to:
- Describe the fundamental composition of matter
- Identify the three subatomic particles
- Identify the four most abundant elements in the body
- Explain the relationship between an atom’s number of electrons and its relative stability
- Distinguish between ionic bonds, covalent bonds, and hydrogen bonds
- Explain how energy is invested, stored, and released via chemical reactions, particularly those reactions that are critical to life
- Explain the importance of the inorganic compounds that contribute to life, such as water, salts, acids, and bases
- Compare and contrast the four important classes of organic (carbon-based) compounds—proteins, carbohydrates, lipids and nucleic acids—according to their composition and functional importance to human life
The smallest, most fundamental material components of the human body are basic chemical elements. In fact, chemicals called nucleotide bases are the foundation of the genetic code with the instructions on how to build and maintain the human body from conception through old age. There are about three billion of these base pairs in human DNA.
Human chemistry includes organic molecules (carbon-based) and biochemicals (those produced by the body). Human chemistry also includes elements. In fact, life cannot exist without many of the elements that are part of the earth. All of the elements that contribute to chemical reactions, to the transformation of energy, and to electrical activity and muscle contraction—elements that include phosphorus, carbon, sodium, and calcium, to name a few—originated in stars.
These elements, in turn, can form both the inorganic and organic chemical compounds important to life, including, for example, water, glucose, and proteins. This chapter begins by examining elements and how the structures of atoms, the basic units of matter, determine the characteristics of elements by the number of protons, neutrons, and electrons in the atoms. The chapter then builds the framework of life from there.
- Anatomy & Physiology
- Preface
- Unit 1: Levels of Organization
- Unit 2: Support and Movement
- The Integumentary System
- Bone Tissue and the Skeletal System
- Axial Skeleton
- The Appendicular Skeleton
- Joints
- Muscle Tissue
- The Muscular System
- Introduction
- Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
- Naming Skeletal Muscles
- Axial Muscles of the Head, Neck, and Back
- Axial Muscles of the Abdominal Wall, and Thorax
- Muscles of the Pectoral Girdle and Upper Limbs
- Appendicular Muscles of the Pelvic Girdle and Lower Limbs
- Unit 3: Regulation, Integration, and Control
- The Nervous System and Nervous Tissue
- Anatomy of the Nervous System
- The Brain and Cranial Nerves
- The Autonomic Nervous System
- The Neurological Exam
- The Endocrine System
- Introduction
- An Overview of the Endocrine System
- Hormones
- The Pituitary Gland and Hypothalamus
- The Thyroid Gland
- The Parathyroid Glands
- The Adrenal Glands
- The Pineal Gland
- Gonadal and Placental Hormones
- The Endocrine Pancreas
- Organs with Secondary Endocrine Functions
- Development and Aging of the Endocrine System
- Unit 4: Fluids and Transport
- The Cardiovascular System: Blood
- The Cardiovascular System: The Heart
- The Cardiovascular System: Blood Vessels and Circulation
- The Lymphatic and Immune System
- Introduction
- Anatomy of the Lymphatic and Immune Systems
- Barrier Defenses and the Innate Immune Response
- The Adaptive Immune Response: T lymphocytes and Their Functional Types
- The Adaptive Immune Response: B-lymphocytes and Antibodies
- The Immune Response against Pathogens
- Diseases Associated with Depressed or Overactive Immune Responses
- Transplantation and Cancer Immunology
- Unit 5: Energy, Maintenance, and Environmental Exchange
- The Respiratory System
- The Digestive System
- Metabolism and Nutrition
- The Urinary System
- Introduction
- Physical Characteristics of Urine
- Gross Anatomy of Urine Transport
- Gross Anatomy of the Kidney
- Microscopic Anatomy of the Kidney
- Physiology of Urine Formation
- Tubular Reabsorption
- Regulation of Renal Blood Flow
- Endocrine Regulation of Kidney Function
- Regulation of Fluid Volume and Composition
- The Urinary System and Homeostasis
- Fluid, Electrolyte, and Acid-Base Balance
- Unit 6: Human Development and the Continuity of Life