After studying this chapter, you will be able to:
- Identify the main tissue types and discuss their roles in the human body
- Identify the four types of tissue membranes and the characteristics of each that make them functional
- Explain the functions of various epithelial tissues and how their forms enable their functions
- Explain the functions of various connective tissues and how their forms enable their functions
- Describe the characteristics of muscle tissue and how these enable function
- Discuss the characteristics of nervous tissue and how these enable information processing and control of muscular and glandular activities
The body contains at least 200 distinct cell types. These cells contain essentially the same internal structures yet they vary enormously in shape and function. The different types of cells are not randomly distributed throughout the body; rather they occur in organized layers, a level of organization referred to as tissue. The micrograph that opens this chapter shows the high degree of organization among different types of cells in the tissue of the cervix. You can also see how that organization breaks down when cancer takes over the regular mitotic functioning of a cell.
The variety in shape reflects the many different roles that cells fulfill in your body. The human body starts as a single cell at fertilization. As this fertilized egg divides, it gives rise to trillions of cells, each built from the same blueprint, but organizing into tissues and becoming irreversibly committed to a developmental pathway.
- Anatomy & Physiology
- Preface
- Unit 1: Levels of Organization
- Unit 2: Support and Movement
- The Integumentary System
- Bone Tissue and the Skeletal System
- Axial Skeleton
- The Appendicular Skeleton
- Joints
- Muscle Tissue
- The Muscular System
- Introduction
- Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
- Naming Skeletal Muscles
- Axial Muscles of the Head, Neck, and Back
- Axial Muscles of the Abdominal Wall, and Thorax
- Muscles of the Pectoral Girdle and Upper Limbs
- Appendicular Muscles of the Pelvic Girdle and Lower Limbs
- Unit 3: Regulation, Integration, and Control
- The Nervous System and Nervous Tissue
- Anatomy of the Nervous System
- The Brain and Cranial Nerves
- The Autonomic Nervous System
- The Neurological Exam
- The Endocrine System
- Introduction
- An Overview of the Endocrine System
- Hormones
- The Pituitary Gland and Hypothalamus
- The Thyroid Gland
- The Parathyroid Glands
- The Adrenal Glands
- The Pineal Gland
- Gonadal and Placental Hormones
- The Endocrine Pancreas
- Organs with Secondary Endocrine Functions
- Development and Aging of the Endocrine System
- Unit 4: Fluids and Transport
- The Cardiovascular System: Blood
- The Cardiovascular System: The Heart
- The Cardiovascular System: Blood Vessels and Circulation
- The Lymphatic and Immune System
- Introduction
- Anatomy of the Lymphatic and Immune Systems
- Barrier Defenses and the Innate Immune Response
- The Adaptive Immune Response: T lymphocytes and Their Functional Types
- The Adaptive Immune Response: B-lymphocytes and Antibodies
- The Immune Response against Pathogens
- Diseases Associated with Depressed or Overactive Immune Responses
- Transplantation and Cancer Immunology
- Unit 5: Energy, Maintenance, and Environmental Exchange
- The Respiratory System
- The Digestive System
- Metabolism and Nutrition
- The Urinary System
- Introduction
- Physical Characteristics of Urine
- Gross Anatomy of Urine Transport
- Gross Anatomy of the Kidney
- Microscopic Anatomy of the Kidney
- Physiology of Urine Formation
- Tubular Reabsorption
- Regulation of Renal Blood Flow
- Endocrine Regulation of Kidney Function
- Regulation of Fluid Volume and Composition
- The Urinary System and Homeostasis
- Fluid, Electrolyte, and Acid-Base Balance
- Unit 6: Human Development and the Continuity of Life