Giáo trình

Giáo trình Vi sinh vật học

Science and Technology

Lai ADN

Tác giả: Nguyễn Lân Dũng

Lai ADN

Nguyên tắc được tiến hành như sau: ADN tổng số được tách ra và xử lý với enzym cắt hạn chế (có trường hợp không cần xử lý với enzym cắt hạn chế) sau đó điện di trên gel agarose và chuyển lên màng lai. Mẫu dò (probe) được chuẩn bị và lai với màng ADN ở trên. Kết quả phép lai cho biết sự khác biệt giữa các mẫu ADN khác nhau.

         Phép lai được tiến hành ở đây dựa vào cấu trúc sợi đôi ADN từ hai sợi đơn với các cầu liên kết hydrogene theo nguyên tắc bổ sung. Bắt đầu là đứt gãy các liên kết hydrogene do hoá chất (kiềm) hay biến tính nhiệt, lúc này hai sợi đơn ADN tách nhau  được gọi là trạng thái biến tính ADN (denature). Nếu tại thời điểm này người ta cho vào một ADN đánh dấu biến tính (mẫu dò) sau đó tạo điều kiện hồi biến xuất hiện (renature), lúc đó sẽ cho phép các sợi đơn của mẫu dò bắt cặp với các sợi đơn của mẫu ADN ban đầu (target ADN). Mức độ lai sẽ phụ thuộc vào tính đặc hiệu (sự tương đồng) giữa mẫu dò và mẫu gốc cũng như điều kiện cho phép lai thực hiện (nhiệt độ, nồng độ muối, pH, tỷ lện mẫu dò, kích thước mẫu dò). Như vậy, việc chọn điều kiện chính xác cho phép lai có ý nghĩa rất quan trọng cho tính đặc hiệu của kết quả phép lai. Sau khi lai, bước tiếp theo là rửa bằng đệm thích hợp để loại mẫu dò dư và cuối cùng là phép đo bức xạ đánh dấu (tuỳ theo phương pháp đánh dấu phóng xạ hay hoá chất phát xạ huỳnh quang) để đánh giá mức độ tương đồng của phép lai.

         Nói tóm lại một số nhân tố tham gia vào kết quả của phép lai là: mẫu dò ADN, phương pháp đánh dấu ADN, mẫu ADN lai và điều kiện tiến hành và phương pháp đánh giá kết quả phép lai.

Chọn mẫu dò:

         Việc chọn mẫu dò có ý nghĩa quan trọng cho phép lai. Nhìn chung các nhà phân loại học vi sinh vật thường không trực tiếp thiết kế mẫu dò. Về mặt này chúng tôi đưa ra một số nội dung chủ yếu về tiêu chí chọn mẫu dò theo Stahl và Amann (1991) như sau: Mẫu dò sẽ lai với ADN đích (target) và không lai với các nguồn ADN khác có mặt trong mẫu lai. Khi phân tích các mẫu vi sinh vật với nhau thì mẫu dò nên là đoạn nucleotid đặc trưng cho các mẫu phân tích để phân biệt với các sinh vật khác. Tuy việc chọn mẫu dò cũng mang tính kinh nghiệm, mẫu dò đôi khi không cần phải là toàn bộ gene mà chỉ là một đoạn gene mã hoá cho một đặc tính đặc trưng cho đối tượng nghiên cứu (có thể là yếu tố kháng nguyên bề mặt, độc tố hay một gene chức năng nào đó trên plasmid). Với cách chọn mẫu dò có kích thước nhỏ (14-40 bp), có thuận lợi là các mẫu dò được tổng hợp nhân tạo và phép lai thực hiện nhanh (dưới 30 phút) trong khi đó với các mẫu dò lớn thời gian kéo dài hơn (khoảng 16 giờ). Hạn chế lớn nhất đối với các mẫu dò nhỏ là khó khăn khi đánh dấu và dẫn đến giảm tính đặc hiệu của phép lai.

         Một cách thường được sử dụng là thiết kế các mẫu dò từ các chuỗi ARN thông tin 16S. Cách chọn có thể căn cứ vào đoạn ADN có mặt trong các đại diện mức độ dưới loài, trong loài hay thuộc chi nghiên cứu.

Các phương pháp đánh dấu:

         Các kỹ thuật đánh dấu ADN được xem là lĩnh vực phát triển mạnh nhất trong sinh học phân tử. Nói chung kỹ thuật đánh dấu được chia thành kỹ thuật đánh dấu trực tiếp và gián tiếp. Trong phương pháp trực tiếp thì phần đánh dấu để phát hiện được gắn vào acid nucleic. Đối với phương pháp gián tiếp thì có một phần chức năng được gắn vào acid nucleic và phần này lại được phát hiện gián tiếp dựa vào protein bám đặc hiệu được phát hiện bằng kỹ thuật miễn dịch. Sau đây là chi tiết các phương pháp đánh dấu.

Đánh dấu trực tiếp:

- Bảng dưới đây đưa ra các loại cơ chất dùng cho phương pháp đánh dấu trực tiếp dựa vào việc nhân ADN được đánh dấu lên sẽ tăng độ nhạy so với phương pháp đánh dấu chỉ được thực hiện với các mồi đơn lẻ. Đối với các phương pháp đánh dấu trực tiếp thì các nhóm tạo tín hiệu được gắn trực tiếp bằng liên kết hoá trị với nucleic của mẫu dò.

- Đánh dấu trực tiếp bao gồm 2 bước chính: tạo tín hiệu dựa vào liên kết hoá trị của nhóm tín hiệu với mẫu dò và thực hiện phép lai giữa mẫu nghiên cứu và mẫu dò.

Bảng 1.4. Một số cơ chất dùng cho đánh dấu trực tiếp.

 

 

Hình 1.3. Minh hoạ phương pháp đánh dấu trực tiếp (A) và gián tiếp (B)

 

Đánh dấu gián tiếp:

 

Đánh dấu gián tiếp được thực hiện theo 3 bước: thực hiện phép lai giữa mẫu dò và mẫu ADN đích, phản ứng giữa nhóm chức năng và protein bám đặc hiệu với nhóm chức tín hiệu thông báo (reporter) và cuối cùng là tạo ra tín hiệu từ nhóm chức tín hiệu.

 

Bảng 1.5. Liệt kê một số hệ thống đánh dấu gián tiếp.

 

 

Mặc dù có nhiều hệ thống đánh dấu và phát hiện tín hiệu nhưng kinh nghiệm cho thấy hệ thống biotin và digoxidenin cho độ nhạy cao hơn cả. Hai hệ thống này có thể phát hiện tới mức dưới picrogam acid nucleic. Trong trường hợp với biotin thì đôi khi có mức độ nhiễu nền cao do biotin có mặt trong các sinh phẩm, còn đối với digoxigenein thì có thể không gặp khó khăn này.

Đánh dấu phóng xạ và ghi phóng xạ:

         Phương pháp đánh dấu phóng xạ là phương pháp được dùng phổ biến trong các phòng thí nghiệm lai ADN với các thành phần đánh dấu là 32P và 35S. Kết quả của phép lai giữa mẫu dò và ADN đích được phát hiện trên X-phim hoặc nhấp nháy lỏng. Ưu điểm nổi bật của phương pháp đánh dấu phóng xạ là độ nhạy có thể đạt tới dưới mức picrogam ADN đích. Hạn chế của phương pháp này là không đạt được sự thích hợp cần thiết cho các thí nghiệm chẩn đoán liên quan tới xác định mẫu vi sinh vật, ví dụ thời gian bán huỷ mẫu dò ngắn, nguy hiểm cho người sử dụng và cần yêu cầu an toàn nghiêm ngặt cho phòng thí nghiệm và cá nhân sử dụng cũng như việc quản lý chất thải.

         Xuất phát từ thực tế trên mà càng ngày người ta càng quan tâm đến các phương pháp đánh dấu phi phóng xạ. Mục tiêu là đạt được một hệ thống đánh dấu có độ nhạy tương đương với phương pháp dùng chất phóng xạ. Bảng dưới đây liệt kê các yêu cầu lý tưởng cho phương pháp đánh dấu mẫu dò:

         1, Dễ gắn với acid nucleic theo phương pháp đơn giản và có độ lặp lại cao.

         2, Bền trong điều kiện lai và bảo quản.

         3, Không bị ảnh hưởng và làm ảnh hưởng đến phản ứng lai.

         4, Có thể thực hiện với điều kiện phản ứng lai trong dịch thể (liquid phase) hay có chất mang (solid phase).

         5, Phương pháp phát hiện nhạy và đơn giản.

         6, Dễ bị loại bỏ sau phản ứng lai.

         7, Dễ phân biệt giữa mẫu lai và mẫu chưa lai trong cùng điều kiện.

         8, Có thể ứng dụng với hệ thống tự động hoá.

         Tuy nhiên, nếu theo các yêu cầu lý tưởng trên thì chưa có hệ thống đánh dấu phi phóng xạ nào thoả mãn.

         Hiện nay, có nhiều hệ thống đánh dấu phi phóng xạ đạt độ nhạy cao và đó là lý do các phương pháp này đang được ứng dụng rộng rãi đặc biệt là phương pháp dựa trên các enzym như Alkaline phosphatase, Horseradisk peroxidase. Tuy nhiên phương pháp sử dụng các chất phóng xạ hiện tại vẫn đang được dùng cho một số phòng thí nghiệm đặc biệt.

Chiến lược đánh dấu với chất phi phóng xạ.

         Có 3 phương pháp đánh dấu phi phóng xạ:

         1, Dùng cơ chất hoá phát xạ và sinh phát xạ, trong trường hợp này thì cả cơ chất hoá và sinh phát quang đều tạo ra các bức xạ ánh sáng và sau đó là phương pháp phát hiện bức xạ này.

         * Với nguồn cơ chất hoá phát quang có loại như AMPPD (Bronstein, Edward & Voyta, 1989) có thể được dùng trực tiếp như là cơ chất cho enzym Alkaline phosphatase trong phép lai ADN đạt độ nhạy cao trong thời gian ngắn (Bronstein et al., 1990).

         * Phương pháp phát xạ sử dụng enzym Alkaline phosphatase trên cơ sở giải phóng D-luciferin từ cơ chất, ví dụ D-luciferin-O-phosphate (Miska và Geiger., 1987). Hai phương pháp này tương đối nhạy và đang được sử dụng rộng rãi.

Phương pháp phát hiện dựa vào thay đổi màu:

         Phương pháp đo màu có thể thực hiện trên môi trường dịch thể hay chất mang và khá nhạy so với phương pháp phát quang. Người ta đã tạo ra các cơ chất sinh màu khi có mặt enzym (chẳng hạn như Alkaline phosphatase). Lợi thế của phương pháp này là việc phát hiện đơn giản do kết quả là sự thay đổi màu dễ phát hiện và ứng dụng trong các phòng thí nghiệm vi sinh vật.

         Một phương pháp có thể làm tăng độ nhạy của phản ứng màu bằng cách thêm một enzym kích hoạt phản ứng màu vào hệ thống. Một ví dụ cho điều này là vai trò loại nhóm phosphat của phân tử NADP thành NAD do Alkaline phosphatase trong hệ thống phát hiện mẫu dò nucleic. Trong hệ thống này thì NAD có vai trò kích hoạt chu trình oxy hoá mà có sự tham gia của alcohol dehydrogenease và diaphorase. Trong mỗi một chu trình thì NAD sẽ bị khử thành NADPH + H+. Phản ứng oxy hoá này lại kèm theo phản ứng oxy hoá mà NADPH + H+ lại bị oxy hoá thành NAD,  mọi phản ứng xảy ra gắn liền với việc khử ρ-indonitro-tetrazolium màu tím thành formazan. Sản phẩm cuối cùng formazan được định lượng bằng phép so màu (Self. 1985).

Cơ chất huỳnh quang và phát xạ huỳnh quang theo thời gian.

         Sử dụng cơ chất phát xạ huỳnh quang là phương pháp khá nhạy và có thể phát hiện được tới một phân tử chất phát xạ (fluorescein). Nói chung với các mẫu sinh phẩm thường có mức độ nhiễu tín hiệu nền cao. Thực tế này có thể được cải thiện với cơ chất fluorophore bền bị kích hoạt bởi sóng ánh sáng. Sự phát xạ sau đó được ghi lại khi các bức xạ nền đã bị giảm. Đối với phương pháp dùng Alkaline phosphatase thì việc phát hiện nhân tố gắn lanthanide theo thời gian đi kèm với hoạt tính enzym này gọi là phương pháp phát quang lanthanide khuyếch đại bởi enzym (EALL: Evangelista, Pollack & Templeton, 1991). Trong trường hợp này, cơ chất không có khả hình thành phức hệ gắn với lathanide phát xạ. Dưới tác dụng của Alkaline phosphatase thì cơ chất và lanthalide bị chuyển thành phức hệ hoạt động. Phương pháp này khá nhạy nhưng hạn chế lớn nhất của nó là cần thiết bị kích hoạt và đo bức xạ huỳnh quang.

Quá trình lai:

         Nói chung quá trình lai (Hybridization ) được tiến hành theo một trong 3 cách sau để định danh hay xác định vi sinh vật: Lai với vi sinh vật (in situ), lai trong dịch thể và lai với chất mang (solid support).

Kỹ thuật lai với vi sinh vật (in situ), hình 1.4.

Hình 1.4. Minh hoạ kỹ thuật lai in situ với kỹ thuật FISH (fluorescence in situ hybridization) phát hiện vi khuẩn Helicobacter pylori.

Kỹ thuật này được thực hiện để định vị chuỗi acid nucleic trong vi sinh vật sau khi đã được cố định trong các tiêu bản hiển vi. Tuy nhiên, do hầu hết các vi sinh vật có khả năng thấm (hay cho phép) các đoạn ngắn oligonucleotid đánh dấu đi vào tế bào sau khi cố định mẫu vì vậy khi sử dụng mẫu dò đánh dấu với chất nhuộm huỳnh quang đặc biệt có thể nhìn thấy được trực tiếp vi sinh vật dưới kính hiển vi huỳnh quang. Điều đáng chú ý là phản ứng lai phải tiến hành trong thiết bị được hàn kín nhằm hạn chế việc bay hơi của dịch lai. Việc bay hơi dịch lai này dẫn đến việc bám không đặc hiệu của chất nhuộm huỳnh quang với tế bào. Nhiệt độ lai phụ thuộc vào oligonucleotid mẫu dò. Sau phản ứng lai thì mẫu phải được xem ngay hoặc được bảo quản trong tối trong thời gian 6 tháng. Nếu mẫu dò đặc hiệu cho RNA thì độ nhạy tăng lên rất lớn vì có tới hàng ngàn bản copy của RNA trong mỗi tế bào (Stahl và Amman, 1991).

Lai trong môi trường dịch thể:

         Phản ứng lai trong môi trường dịch thể xảy ra nhanh hơn nhiều so với môi trường có chất mang pha rắn (soild). Do cả phân tử ADN đích và mẫu dò đều có thể di động tự do trong môi trường do đó phản ứng đạt kết quả cao nhất. Nói chung với phép lai thực hiện trong dịch thể thì thời gian kết thúc nhanh hơn từ 5-10 lần so với trong điều kiện là chất mang (Bryan, et al., 1986). Tuy nhiên, cũng có thể bổ sung thêm chất mang làm tăng phản ứng lai. Cần thêm bước cuối cùng là tách phức hợp mẫu dò-sợi ADN đích. Hạn chế ở đây là mẫu trong dịch cho nên có thể tạo lên các nền kém đặc hiệu, do vậy cần các giải pháp làm hạn chế mức độ nhiễu của nền cho thích hợp.

Hình 1.5. Minh hoạ kỹ thuật lai trong môi trường dịch thể.

Trên thực tế hầu hết các KIT thương phẩm dùng cho vi sinh vật đều tiến hành trong môi trường dịch thể. Vi sinh vật trong mẫu đầu tiên được phân giải trong điều kiện thích hợp để ADN đích lai với mẫu dò. Sau đó là bước lai và tách phức hệ mẫu dò và ADN đích dựa vào các thông số của phép lai theo kiểu kẹp díp cụ thể. Các phép lai theo kiểu kẹp díp (hình 1.9) cần có hai đoạn ADN có trình tự khác nhau; một đoạn để bám giữ ADN đích gắn vào chất mang và một đoạn là mẫu dò. Điều quan trọng là hai đoạn ADN này phải có trình tự khác nhau cho dù chúng đều gắn với hai vùng khác nhau trên đoạn ADN đích theo nguyên tắc bổ sung. Mẫu dò đánh dấu được bổ sung vào trong dung dịch có các đoạn ADN đích nghiên cứu. Như vậy theo hình vẽ phức hợp ADN mẫu dò đánh dấu để phát hiện gắn với ADN đích và phức hợp mẫu dò- ADN đích gắn vào chất mang đã được hình thành. Phức hợp này được tách ra khỏi dung dịch và khi có mặt cơ chất thích hợp để phát hiện được mẫu dò đánh dấu. Khi dùng hệ thống phát hiện dựa vào các hoá chất huỳnh quang hay tạo màu có thể dùng thiết bị phát hiện kết quả một cách tự động.

Kỹ thuật lai dựa vào màng:

         Tác giả đầu tiên giới thiệu kỹ thuật cố định ADN trên màng là Nygaard và Hall (1963, 1964). Sau đó chính Southern (1975) là người mô tả việc tách ADN khỏi gel sau khi điện di và chuyển chúng lên màng nitrocellulose. Các đoạn ADN đích được phát hiện bằng kỹ thuật lai và đây là bước tiến quan trọng của sinh học phân tử. Từ năm 1977 đến nay đã có nhiều cải tiến về phép lai cũng như bước chuyển ADN lên màng của các tác giả khác nhau như: Meinkoth và Wahl (1984). Người ta cũng đã sử dụng một số màng nynol, màng nitrocellulose hoạt hoá hay có độ bền cho các phép lai. Đối với công việc định loại vi sinh vật với kỹ thuật cố định trên màng cho phép lai ADN thì cần chấm mẫu (là ADN sạch, hay tế bào vi sinh vật hoặc sinh phẩm có vi sinh vật nghiên cứu) lên màng thích hợp. Mẫu được ly giải và ADN bị biến tính, sau đó ADN được cố định trên màng khi đưa vào tủ xấy tại 80oC trong 2 giờ hoặc đưa vào xử lý với tia UV trong trường hợp sử dụng màng lynon. Mẫu dò đánh dấu sau đó được đưa vào dung dịch. Bước tiền lai được thực hiện để hạn chế các mẫu bám vào nhau không đặc hiệu. Sau đó là bước lai, màng sau khi lai được rửa để loại các mẫu dò còn dư. Bước rửa tiếp theo để đánh giá mức độ bám đặc hiệu của phép lai. Sau đó các mẫu dò đánh dấu lai với vị trí ADN mẫu trên màng được phát hiện bằng các hệ thống phát hiện tương thích. Toàn bộ quá trình lai trên màng đã được Meinkoth và Wahl (1984) mô tả chi tiết.

         Khi phát hiện typ vi sinh vật, chúng ta phải sử dụng kỹ thuật Southern. Trong phương pháp này ADN của nhiễm sắc thể được tinh sạch và được xử lý với enzym cắt hạn chế thích hợp, sau đó mẫu lại được điện di trên gel agarose và tạo ra dấu vân (finger print) của nhiễm sắc thể. Sau khi điện di gel được đặt dưới màng nitrocellulose hay màng nylon nằm giữa một số lớp giấy. Lớp giấy lọc phía trên được đặt trên cùng phần gel và màng kẹp giữa giấy lọc như trong hình 1.6.

Hình 1.6. Mô tả phương pháp chuyển ADN lên màng cho kỹ thuật Southern Blot.

Kết quả là đệm từ phía dưới được thấm một cách tự nhiên lên trên. Điều đó giúp cho việc chuyển các mảnh ADN từ gel lên màng và bám chặt vào màng với kích thước và phiên bản đúng như trên gel sau khi điện di (mô tả chi tiết theo Sambrook 1989).

Phương pháp truyền thống này cũng được cải tiến khi dùng màng nylon để chuyển ADN trong điều kiện biến tính (Read và Mann 1985). Thời gian chuyển có thể vài giờ hoặc qua đêm. Việc cố định ADN trên màng được thực hiện sau đó bằng cách xử lý nhiệt hay tia UV như đã trình bày ở trên. Tuy nhiên, nhiều phương pháp cải tiến được thực hiện nhanh như chuyển bằng điện di (Bittner, Kupfere, Morris, 1980) hay sử dụng bơm chân không (Medveczky, 1987; Olszewsk, 1988).

Trong nhiều trường hợp dùng điện để chuyển ADN từ gel agarose lên màng thì trước tiên gel phải được xử lý biến tính và được làm trung hoà trở lại. Gel được đặt giữa hai bản điện có các bản giấy thấm (hình 1.7).

       

Hình 1.7. Minh hoạ bước chuyển ADN lên màng.

         Sau đó nguồn điện được nối và lúc đó ADN sẽ được chuyển lên màng. Thời gian chuyển sẽ phụ thuộc vào kích thước đoạn ADN nhưng thường dao động trong khoảng 1-3 giờ. Phương pháp có thể thực hiện theo chiều thẳng đứng hay chiều nằm ngang. Hiện nay có một số thiết bị bán trên thị trường được dùng cho kỹ thuật này. Với thiết bị nằm thẳng đứng, thì toàn bộ được ngâm trong đệm và có thể tăng cường độ dòng điện (chú ý vì có thể làm tăng nhiệt độ), phương pháp này cần dùng nhiều đệm. Ngược lại theo phương pháp nằm ngang hay phương pháp semi-dry, ở đây gel và màng được kẹp giữa các bản giấy lọc đã tẩm ướt bằng đệm thích hợp. Trường hợp này cần rất ít đệm và cường độ dòng điện là 1mA/cm2 là thích hợp.

         Trong trường hợp chuyển ADN lên màng bằng áp lực do chân không, việc thiết lập hệ thống được trình bày mà ở đó gel được đặt trên màng và sử dụng lực hút chân không để đưa ADN lên màng. Dùng lực hút chân không đạt được hiệu quả chuyển ADN lên màng cao hơn phương pháp thấm tự nhiên. Hiệu quả tối đa cho chuyển gel với trường hợp geneom sau xử lý enzym cắt hạn chế có thể đạt được sau 1 giờ.

Phân tích RELPs với kỹ thuật lai ADN.

         Giới thiệu phương pháp:

         Như đã trình bày, sự phức tạp trong kỹ thuật RELP đã tạo ra những khó khăn cho việc xác định các tác nhân gây bệnh trong các nghiên cứu về dịch tễ học. Điều này còn khó khăn và phức tạp hơn trong khi so sánh các kết quả thu được trên các bản gel khác nhau hoặc tại các phòng thí nghiệm khác nhau. Nguyên nhân là do số lượng các băng ADN lớn tới mức không thể xác định kích thước của chúng hay các băng thu được không lặp lại các kết quả nghiên cứu.

         Mặc dù vậy, theo phương pháp này các phổ ADN phức tạp sau khi xử lý với enzym cắt hạn chế sẽ được làm biến tính và chuyển lên màng nitroxenluloza hay nylon. Màng sẽ được lai với mẫu dò thích hợp, kết quả phổ phép lai sẽ rõ và không quá phức tạp do nó chỉ hiển thị các mảnh ADN bắt cặp với mẫu dò. Với một số lượng không lớn các mảnh hiển thị thu được sau phép lai sẽ cho phép xác định được chính xác hơn về kích thước. Điều này làm cơ sở cho so sánh giữa các gel với nhau cũng như kết quả thu được từ các phòng thí nghiệm khác nhau.

         Khi sử dụng phương pháp này cần chú ý một số mẫu dò sau:

         1, Mẫu dò có thể là đoạn RNA ribosom từ một loài sinh vật nào đó: ví dụ rRNA của E.coli có thể được các công ty thương phẩm cung cấp (Boeringer Mannheim), đây là mẫu dò khá thuận lợi và được đánh dấu phóng xạ hay với các cơ chất huỳnh quang. Ưu điểm chính của mẫu dò này ở chỗ phần RNA là đoạn khá bảo thủ do đó mẫu dò có thể dùng lai với các sản phẩm xử lý enzym cắt hạn chế của nhiều loài vi khuẩn khác nhau. Có một số loài khi lai với mẫu dò chỉ cho một kết quả giống nhau trong khi đó ở loài khác khi lai các chủng với mẫu dò thì lại thu được kết quả khác nhau. Đây là cơ sở cho phương pháp ribotyping.

         2, Mẫu dò có thể là đoạn ADN ngẫu nhiên có chức năng không xác định (Tompkins et al., 1986). Mẫu dò này thường được dùng cho các loài có chứa chính các đoạn ADN này. Sử dụng các mẫu dò này đôi khi rất có ý nghĩa trong việc phân biệt các mẫu sau khi tiến hành phương pháp ribotyping (Saunders et al., 1990).

         3. Một cách khác nữa cũng được dùng là sử dụng mẫu dò là một đoạn ADN tách dòng từ một gene đã biết. Ví dụ dùng đoạn gene mã hoá cho độc tố ngoại bào (exotoxinA) sử dụng để định typ Pseudomonasaeruginosa (Ogle et al., 1987). Mẫu dò dùng gene mã hoá cho độc tố Cholera được dùng để xác định các typ cho các chủng thuộc họ phảy khuẩn sinh độc tố (Yam, Li Lung & Ng, 1989). Việc sử dụng bất kỳ loại mẫu dò nào cũng tạo ra phổ đặc trưng của phép lai có ý nghĩa cho so sánh giữa các chủng với nhau.

         Hạn chế chính của kỹ thuật này ở chỗ kết quả thu nhận chỉ khu trú phần gene bắt cặp với mẫu dò mà không đặc trưng cho cả hệ gene.

Bảng 1.6. Kết quả thu được khi thực hiện kỹ thuật RFLP với dùng các mẫu dò không phải là ribosom.

 

        

Kỹ thuật ribotyping:

         Như đã trình bày ở trên mọi mẫu dò đều cho các kết quả có sức thuyết phục tuy nhiên kỹ thuật dùng mẫu dò là đoạn RNA của ribosom đã đưa ra một cách tiếp cận mới trong nghiên cứu dịch tễ phân tử với các vi khuẩn có sự khác biệt lớn trong khi đó các mẫu dò khác chỉ giới hạn với một loài hay chỉ có ý nghĩa cho các chủng trong cùng một loài. Kỹ thuật này lần đầu tiên được Grimont mô tả năm 1986 và nhanh chóng trở thành phương pháp hữu hiệu hiện nay cho nghiên cứu dịch tễ học vi sinh vật ở mức độ phân tử.

         Tính hợp lý cho việc sử dụng kỹ thuật này là ở chỗ gene mã hoá cho RNA ribosom có độ bảo thủ cao. Cũng có thể phát hiện thấy những thay đổi chút ít trong quá trình tiến hoá đối với các chuỗi ADN trong các vi khuẩn nghiên cứu. Gene RNA ribosom được tổ chức thành các operon mà các gene riêng rẽ mã cho các RNA kích thước 5S, 16S và 23S chúng được cách nhau bằng các đoạn ADN spacer không mã cho gene nào. Nếu dùng mẫu dò hỗn hợp giữa 16S và 23S thì kết quả phép lai sẽ hiển thị các mảnh tương ứng với phần của gene này trong khi dùng mẫu dò là đoạn của các gene đã được tách dòng có thể đưa đến kết quả hiển thị cả phần gene tương đồng và chuỗi spacer. Như vậy sự khác nhau của kết quả phụ thuộc vào loại mẫu dò sử dụng.

Yêu cầu kỹ thuật:

Để thu được kết quả tối ưu cần có các yêu cầu kỹ thuật cụ thể cho từng bước thực hiện.

Đầu tiên là phải tạo ra được phổ dấu vân tay thu được sau khi xử lý mẫu với enzym cắt hạn chế. Phổ vân tay tối ưu khi các mảnh cắt phải được tách rõ và phân bố đồng đều về kích thước trên gel. Số lượng các mảnh ADN thu được phụ thuộc vào mẫu ADN và loại enzym cắt hạn chế được sử dụng. Thông thường phải chọn một số mẫu xử lý thử trước với từng loại enzym (hay đồng thời xử lý với một số enzym). Có thể thấy rõ là các enzym có 5 nucleotid tại vị trí cắt sẽ tạo ra sản phẩm nhiều mảnh hơn các enzym có 6 nucleotid tại vị trí nhận biết.

Thực tế cũng cho thấy khi dùng enzym cắt hạn chế (một hay đồng thời vài loại) để thu được phổ các đoạn cắt hợp lý cho việc phân tích ribotyping thì các kết quả này cũng rất khác nhau. Như vậy, điều quan trọng nên tiến hành trước các phép phân tích này, phải chọn được một số chủng đặc trưng và thử với một số enzym cắt hạn chế để chọn giải pháp cho nghiên cứu dịch tễ học với kỹ thuật này. Trong một số trường hợp kết quả phân tích khi chỉ tiến hành với 1 hay 2 enzym cắt hạn chế có thể không đưa ra được kết quả chính xác.

Như vậy, khi có được kết quả hợp lý sau khi xử lý các mẫu ADN với enzym cắt hạn chế thì tiến hành các bước chuyển các đoạn ADN trên gel lên màng theo các phương pháp đã được mô tả ở trên. Phương pháp chuyển bằng chân không là hợp lý hơn cả vì kết quả cho việc chuyển các băng có kích thước gần nhau lại được tách ra sắc nét trên màng. Khi thực hiện phép lai nên chú ý nếu như dùng nguồn ARN ribosom của một chủng nào đó đánh dấu làm mẫu dò thì cần phải thay đổi điều kiện lai như nhiệt độ để phép lai được thực hiện tốt với các đoạn ADN từ các chủng vi sinh vật khác nhau.

Có một số phương pháp đánh dấu mẫu dò là ADN ribosom. Phương pháp đánh dấu phóng xạ (Grimont, 1986), đây là phương pháp có ưu thế là chỉ cần vài bước đơn giản cho phép lai và rửa mẫu nhưng lại mang nhiều hạn chế như: thời gian bán huỷ ngắn, yêu cầu an toàn cho phòng thí nghiệm riêng biệt, nguy hiểm cho người dùng và gặp khó khăn với việc xử lý chất thải phóng xạ. Mới đây có một số phương pháp đánh dấu mẫu dò phi phóng xạ được sử dụng khá thành công. Pitcher (1987) đã mô tả phương pháp tổng hợp mẫu dò gắn với bilatin để phát hiện ARN ribosom của Providencia stuartii. Chất kích hoạt quang hoá đã được Koblavi và Grimont mô tả (1990). ARN ribosom cũng được đánh dấu bằng acetylaminofluorence (AAF) do Grimont (1989) mô tả. Công ty Eurogeneetik (Bỉ) đã cung cấp phức hợp AAF-rARN trên thị trường.

Gần đây Gustafero và Persing (1992) đã đưa ra một phương pháp mới mà ở đây phức hợp horseradisk-peroxysase-polyethyleneimine với rARN và kích hoạt bằng quang hoá. Các mẫu dò được đánh dấu bằng các chất phi phóng xạ này có thể cho kết quả nhanh tương đương với trường hợp dùng các chất phóng xạ. Như vậy kết quả tiến hành phép lai các mẫu của các chủng khác nhau trong cùng gel chuyển lên có thể so sánh với nhau khi dùng kỹ thuật này. Trong trường hợp xác định chính xác kết quả các mảnh lai với mẫu dò có thể tiến hành so sánh các kết quả thu được từ các phòng thí nghiệm khác nhau.

+ Ứng dụng kỹ thuật ribotyping:

Xác định typ vi khuẩn bằng kỹ thuật ribotyping có một số ưu điểm so với một số kỹ thuật định typ khác ở chỗ:

Thực tế là các gene của ribosom khá bền do chúng nằm trên nhiễm sắc thể. Hầu hết các vi sinh vật đều chứa nhiều phiên bản của operon ribosom do đó khi lai với mẫu dò thích hợp thì kết quả là tạo ra một số mảnh lai có kích thước khác nhau. Hiện nay, nguồn rARN của E.coli đánh dấu là mẫu dò khá phổ biến đã được thương mại hoá.

Hình 1.8. Kết quả ribotyping với Helicobacter pylori.

Do tính đa dạng và phức tạp của kỹ thuật định typ theo ribosom do đó trên thực tế khi nhìn kết quả bằng mắt thường khó có thể phát hiện được sự khác nhau hay giống nhau giữa các chủng trong cùng một loài khi tiến hành nghiên cứu dịch tễ học trên diện rộng. Owen và cộng sự (1992) đã nghiên cứu khả năng trợ giúp của computer để so sánh kết quả thu được khi nghiên cứu các chủng Helicobacterpylori. Tương tự như vậy Bialkowska-Hobranska và cộng sự (1990) dùng thiết bị laze đo mật độ các mảnh ADN lai cùng với sự trợ giúp của computer để phân tích các kết quả thu được từ các chủng cầu khuẩn nha bào gram âm. Phương pháp này có thể đưa ra số liệu chung làm cơ sở cho xác định sự giống nhau giữa các loài khác nhau. Các phân tích thu được từ các số liệu của các các thể khác nhau có thể chỉ ra được các cá thể mới làm cơ sở cho định danh cũng như theo dõi.

Mọi nghiên cứu cho thấy một điều quan trọng và có ý nghĩa nhất là cách chọn enzym cắt hạn chế và loại mẫu dò dùng cho phép lai (Saunder và cộng sự 1991).

Tóm tắt:

         Nhìn chung phương pháp lai ADN chứng tỏ ưu thế của nó như là một kỹ thuật quan trọng cho định typ và nghiên cứu dịch tễ học nhiều loại vi sinh vật khác nhau. Về nguyên tắc phương pháp này cũng có ưu điểm và nhược điểm của nó.

Ưu điểm:

-               Sử dụng cho nhiều đối tượng vi sinh vật.

-               Có các mẫu dò vạn năng được bán rộng rãi trên thị trường. Kết quả lai có độ lặp lại cao và khá đơn giản cho việc phân tích kết quả.

-               Có thể sử dụng sự trợ giúp của computer để lưu giữ và phân tích kết quả thí nghiệm.

Hạn chế:

-               Phương pháp sử dụng khá phức tạp và tốn thời gian.

-               Thông tin kết quả chỉ phản ánh cho đoạn gene lai với mẫu dò sử dụng. Hiện nay, có thể sử dụng các đoạn ADN tổng hợp làm mẫu dò và điều này thực tế đã làm cải thiện nhiều mặt của kỹ thuật lai như: khi có ADN tổng hợp thì không phải thực hiện các kỹ thuật tách và tinh sạch các mảnh ADN tách dòng có thể lẫn ADN plasmid. Mặt khác khi lai với mẫu dò tổng hợp thì phản ứng tiến hành nhanh với độ đặc hiệu cao hơn.

Cho dù kỹ thuật này được sử dụng tốt cho nhiều đối tượng vi sinh vật khác nhau nhưng năm 1992 Heimberger và cộng sự đã tiến hành phân tích ADN được xử lý với enzym cắt hạn chế trong trường xung điện (PFGE), kết quả này rất có ý nghĩa cho phép phân tích sâu hơn và phân biệt các chủng vi sinh vật liên quan đến sự bùng phát dịch đối với các chủng vi sinh vật khác.

Ribotyping và PFGE có chung nguyên tắc dựa vào sự phân bố của các vị trí enzym cắt hạn chế trên ADN của ribosom. Tuy nhiên, sự khác biệt ở chỗ ribotyping phản ánh sự phân bố của vị trí các enzym cắt hạn chế nằm trong các gene mã hoá cho rRNA hay nằm trong vùng nhiễm sắc thể có độ bảo thủ cao, còn đối với PFGE phản ánh sự phân bố của các enzym cắt hạn chế phân bố trên toàn bộ gene nghiên cứu. Nghiên cứu của Prevost (1992) cho thấy là kỹ thuật PFGE có thể hiệu quả hơn kỹ thuật ribotyping đối với phép phân tích các chủng Staphylococus aureus kháng methicillin.

Mục lục
Đánh giá:
5.0 dựa trên 2 đánh giá
Nội dung cùng tác giả
 
Nội dung tương tự