Một số kỹ thuật dự báo đơn giản
Trung bình trượt (Moving Average)
Giá trị dự báo bằng trung bình của m giá trị trước đó
(7.6)
Một lưu ý là khi làm trơn chuỗi dữ liệu bằng kỹ thuật trung bình trượt như trên mô hình giảm (m-1) bậc tự do. Chúng ta tạm gác lại việc thảo luận về số số hạng m của mô hình trung bình trượt (7.6).
San bằng số mũ (Exponential Smoothing Method)1Phương pháp dự báo này còn được gọi là phương pháp Holt.
Ý tưởng của mô hình san bằng số mũ tương tự mô hình kỳ vọng thích nghi mà chúng ta đã xét ở chương 6. Giá trị dự báo mới không chỉ phụ thuộc vào giá trị giai đoạn trước mà còn phụ thuộc giá trị dự báo của giai đoạn trước.
(7.7.a)
hoặc
(7.7.b)
càng gần 1 thì dự báo mới càng gần với giá trị gần nhất, nếu càng gần 0 thì dự báo mới càng gần với dự báo gần nhất. Trong thực tế người ta sẽ thử với các giá trị khác nhau, giá trị được chọn là giá trị làm cho sai số dự báo bình phương trung bình(MSE) của mô hình nhỏ nhất.
Có thể dùng trung bình của 5 đến 6 số đầu tiên để làm giá trị dự báo đầu tiên
Tự hồi quy (Autoregression)
Giá trị dự báo được xác định từ mô hình tự hồi quy với m độ trễ.
(7.8)
Trong mô hình (7.7) có thể có số 0 hoặc không có 0. Trường hợp có 0 ứng với dữ liệu có xu hướng dài hạn tăng hoặc giảm, trường hợp không có 0 ứng với dữ liệu có tính dừng
Tiêu chuẩn đánh giá mô hình dự báo
Gọi là giá trị dự báo cho Yt. Sai số của dự báo là t = Yt - .
Hai tiêu chuẩn thường được sử dụng để đánh giá và so sánh các mô hình dự báo là
Sai số dự báo tuyệt đối trung bình(Mean absolute deviation-MAD)
(7.9)
Sai số dự báo bình phương trung bình(Mean squared error-MSE)
(7.10)
Mô hình tốt là mô hình có MAD và MSE nhỏ.
Một ví dụ bằng số
Sử dụng số liệu giá bắp cải đến tháng 12/1992(hình7.1), chúng ta lập mô hình dự báo giá bắp cải và dự báo cho các tháng của năm 1993.
Mô hình 1: Lin
Xu hướng tuyến tính: với k là số thứ tự của thời kỳ t.
Mô hình 2: MA
Trung bình trượt:
Mô hình 3: Holt
Phuơng pháp Holt: với = 0,6.
Mô hình 4: AR
Tự hồi quy:
Sau khi ước lượng các hệ số của mô hình 1 và 4 dựa trên số liệu đến hết 1992(trong mẫu), chúng ta ước lượng cho cả giai đoạn trước 1993(trong mẫu) và 1993(ngoài mẫu). Chúng ta vẽ đồ thị các dãy số liệu dự báo và số liệu gốc như ở hình 7.5.
Kết quả tính toán sai số của các mô hình như sau:
Trong mẫu:
Ngoài mẫu
Trong trường hợp cụ thể của ví dụ này mô trung bình trượt(MA) cho MSE trong mẫu nhỏ nhất nhưng phương pháp Holt lại cho MSE nhỏ nhất ngoài mẫu.
Hình 7.4. Các phương pháp dự báo đơn giản
- Kinh Tế Lượng
- Giới Thiệu_kinh tế lượng
- Xác Suất
- Thống kê mô tả
- Thống kê suy diễn
- Thống kê suy diễn 2
- Khái niệm về hồi quy
- Hàm hồi quy tổng thể và hồi quy mẫu
- Ước lượng các hệ số của mô hình hồi quy theo phương pháp bình phương tối thiểu
- Khoảng tin cậy và kiểm định giả thiết về các hệ số hồi quy
- Ý nghĩa của hồi quy tuyến tính và một số dạng hàm thường được sử dụng
- Xây dựng mô hình hồi quy tuyến tính bội
- Biến phân loại
- Giới thiệu một số vấn đề liên quan đến mô hình hồi quy
- Dự báo với mô hình hồi quy
- Các thành phần của dữ liệu chuỗi thời gian
- Dự báo theo đường xu hướng dài hạn
- Một số tiêu chuẩn kỹ thuật dự báo đơn giản
- Giới thiệu mô hình ARIMA
- Tài liệu tham khảo
- Bài tập kinh tế lương
- Kinh tế lương – mô hinh hồi quy tuyến tính bội