Anatomy & Physiology
Science and TechnologyStructural Organization of the Human Body
Before you begin to study the different structures and functions of the human body, it is helpful to consider its basic architecture; that is, how its smallest parts are assembled into larger structures. It is convenient to consider the structures of the body in terms of six fundamental levels of organization that increase in complexity: chemical, cellular, tissue, organ, organ system, organism ([link]).
The Six Levels of Organization
To study the chemical level of organization, scientists consider the simplest building blocks of matter: atoms and molecules. All matter in the universe is composed of one or more unique pure substances called elements, familiar examples of which are hydrogen, oxygen, carbon, nitrogen, calcium, and iron. The smallest unit of any of these pure substances (elements) is an atom. Two or more atoms combine to form a molecule, such as the water molecules, proteins, and sugars found in living things. Molecules are the chemical building blocks of all body structures.
A cell is the smallest independently functioning unit of a living organism. Even bacteria, which are extremely small, independently-living organisms, have a cellular structure. Each bacterium is a single cell. All living structures of human anatomy contain cells, and almost all functions of human physiology are performed in cells or are initiated by cells.
A human cell typically consists of flexible membranes that enclose cytoplasm, a water-based cellular fluid together with a variety of tiny functioning units called organelles. In humans, as in all organisms, cells perform all functions of life. A tissue is a group of many similar cells (though sometimes composed of a few related types) that work together to perform a specific function. An organ is an anatomically distinct structure of the body composed of two or more tissue types. Each organ performs one or more specific physiological functions. An organ system is a group of organs that work together to perform major functions or meet physiological needs of the body.
This book covers eleven distinct organ systems in the human body ([link] and [link]). Assigning organs to organ systems can be imprecise since organs that “belong” to one system can also have functions integral to another system. In fact, most organs contribute to more than one system.
The organism level is the highest level of organization. An organism is a living being that has a cellular structure and that can independently perform all physiologic functions necessary for life. In multicellular organisms, including humans, all cells, tissues, organs, and organ systems of the body work together to maintain the life and health of the organism.
Chapter Review
Life processes of the human body are maintained at several levels of structural organization. These include the chemical, cellular, tissue, organ, organ system, and the organism level. Higher levels of organization are built from lower levels. Therefore, molecules combine to form cells, cells combine to form tissues, tissues combine to form organs, organs combine to form organ systems, and organ systems combine to form organisms.
Review Questions
The smallest independently functioning unit of an organism is a(n) ________.
- cell
- molecule
- organ
- tissue
A
A collection of similar tissues that performs a specific function is an ________.
- organ
- organelle
- organism
- organ system
A
The body system responsible for structural support and movement is the ________.
- cardiovascular system
- endocrine system
- muscular system
- skeletal system
D
CRITICAL THINKING QUESTIONS
Name the six levels of organization of the human body.
Chemical, cellular, tissue, organ, organ system, organism.
The female ovaries and the male testes are a part of which body system? Can these organs be members of more than one organ system? Why or why not?
The female ovaries and the male testes are parts of the reproductive system. But they also secrete hormones, as does the endocrine system, therefore ovaries and testes function within both the endocrine and reproductive systems.
- Anatomy & Physiology
- Preface
- Unit 1: Levels of Organization
- Unit 2: Support and Movement
- The Integumentary System
- Bone Tissue and the Skeletal System
- Axial Skeleton
- The Appendicular Skeleton
- Joints
- Muscle Tissue
- The Muscular System
- Introduction
- Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
- Naming Skeletal Muscles
- Axial Muscles of the Head, Neck, and Back
- Axial Muscles of the Abdominal Wall, and Thorax
- Muscles of the Pectoral Girdle and Upper Limbs
- Appendicular Muscles of the Pelvic Girdle and Lower Limbs
- Unit 3: Regulation, Integration, and Control
- The Nervous System and Nervous Tissue
- Anatomy of the Nervous System
- The Brain and Cranial Nerves
- The Autonomic Nervous System
- The Neurological Exam
- The Endocrine System
- Introduction
- An Overview of the Endocrine System
- Hormones
- The Pituitary Gland and Hypothalamus
- The Thyroid Gland
- The Parathyroid Glands
- The Adrenal Glands
- The Pineal Gland
- Gonadal and Placental Hormones
- The Endocrine Pancreas
- Organs with Secondary Endocrine Functions
- Development and Aging of the Endocrine System
- Unit 4: Fluids and Transport
- The Cardiovascular System: Blood
- The Cardiovascular System: The Heart
- The Cardiovascular System: Blood Vessels and Circulation
- The Lymphatic and Immune System
- Introduction
- Anatomy of the Lymphatic and Immune Systems
- Barrier Defenses and the Innate Immune Response
- The Adaptive Immune Response: T lymphocytes and Their Functional Types
- The Adaptive Immune Response: B-lymphocytes and Antibodies
- The Immune Response against Pathogens
- Diseases Associated with Depressed or Overactive Immune Responses
- Transplantation and Cancer Immunology
- Unit 5: Energy, Maintenance, and Environmental Exchange
- The Respiratory System
- The Digestive System
- Metabolism and Nutrition
- The Urinary System
- Introduction
- Physical Characteristics of Urine
- Gross Anatomy of Urine Transport
- Gross Anatomy of the Kidney
- Microscopic Anatomy of the Kidney
- Physiology of Urine Formation
- Tubular Reabsorption
- Regulation of Renal Blood Flow
- Endocrine Regulation of Kidney Function
- Regulation of Fluid Volume and Composition
- The Urinary System and Homeostasis
- Fluid, Electrolyte, and Acid-Base Balance
- Unit 6: Human Development and the Continuity of Life