Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and some are just there, such as the sinker on a fishing line. For small displacements, a pendulum is a simple harmonic oscillator. A simple pendulum is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended from a light wire or string, such as shown in [link]. Exploring the simple pendulum a bit further, we can discover the conditions under which it performs simple harmonic motion, and we can derive an interesting expression for its period.

We begin by defining the displacement to be the arc length *$s$*. We see from [link] that the net force on the bob is tangent to the arc and equals $-\text{mg}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $. (The weight $\text{mg}$ has components $\text{mg}\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\theta $ along the string and $\text{mg}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $ tangent to the arc.) Tension in the string exactly cancels the component $\phantom{\rule{0.25em}{0ex}}\text{mg}\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\theta $ parallel to the string. This leaves a *net* restoring force back toward the equilibrium position at $\theta =0$.

Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic oscillator. In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about $\text{15\xba}$), $\text{sin}\phantom{\rule{0.25em}{0ex}}\theta \approx \phantom{\rule{0.25em}{0ex}}\theta \phantom{\rule{0.25em}{0ex}}$($\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $ and $\theta $ differ by about 1% or less at smaller angles). Thus, for angles less than about $\text{15\xba}$, the restoring force *$F$* is

The displacement *$s$* is directly proportional to $\theta $. When $\theta $ is expressed in radians, the arc length in a circle is related to its radius (*$L$* in this instance) by:

so that

For small angles, then, the expression for the restoring force is:

This expression is of the form:

where the force constant is given by $k=\text{mg}/L$ and the displacement is given by $x=s$. For angles less than about $\text{15\xba}$, the restoring force is directly proportional to the displacement, and the simple pendulum is a simple harmonic oscillator.

Using this equation, we can find the period of a pendulum for amplitudes less than about $\text{15\xba}$. For the simple pendulum:

Thus,

for the period of a simple pendulum. This result is interesting because of its simplicity. The only things that affect the period of a simple pendulum are its length and the acceleration due to gravity. The period is completely independent of other factors, such as mass. As with simple harmonic oscillators, the period $T$ for a pendulum is nearly independent of amplitude, especially if *$\theta $* is less than about $\text{15\xba}$. Even simple pendulum clocks can be finely adjusted and accurate.

Note the dependence of $T$ on *$g$*. If the length of a pendulum is precisely known, it can actually be used to measure the acceleration due to gravity. Consider the following example.

What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of 1.7357 s?

**Strategy**

We are asked to find *$g$* given the period $T$ and the length *$L$* of a pendulum. We can solve $T=\mathrm{2\pi}\sqrt{\frac{L}{g}}$ for *$g$*, assuming only that the angle of deflection is less than $\text{15\xba}$.

**Solution**

- Square $T=\mathrm{2\pi}\sqrt{\frac{L}{g}}$ and solve for $g$:
$g={\mathrm{4\pi}}^{2}\frac{L}{{T}^{2}}.$
- Substitute known values into the new equation:
$g={\mathrm{4\pi}}^{2}\frac{0\text{.}\text{75000}\phantom{\rule{0.25em}{0ex}}\text{m}}{{\left(1\text{.}\text{7357 s}\right)}^{2}}.$
- Calculate to find $g$:
$g=9\text{.}\text{8281}\phantom{\rule{0.25em}{0ex}}\text{m}/{\text{s}}^{2}.$

**Discussion**

This method for determining $g$ can be very accurate. This is why length and period are given to five digits in this example. For the precision of the approximation $\text{sin \theta}\approx \theta $ to be better than the precision of the pendulum length and period, the maximum displacement angle should be kept below about $\text{0.5\xba}$.

# Section Summary

- A mass
*$m$*suspended by a wire of length $L$ is a simple pendulum and undergoes simple harmonic motion for amplitudes less than about $\text{15\xba}.$The period of a simple pendulum is

$T=\mathrm{2\pi}\sqrt{\frac{L}{g}},$where $L$ is the length of the string and $g$ is the acceleration due to gravity.

# Conceptual Questions

Pendulum clocks are made to run at the correct rate by adjusting the pendulum’s length. Suppose you move from one city to another where the acceleration due to gravity is slightly greater, taking your pendulum clock with you, will you have to lengthen or shorten the pendulum to keep the correct time, other factors remaining constant? Explain your answer.

# Problems & Exercises

**As usual, the acceleration due to gravity in these problems is taken to be** $g=9.80\phantom{\rule{0.25em}{0ex}}\text{m}/{\text{s}}^{2}$, **unless otherwise specified.**

What is the length of a pendulum that has a period of 0.500 s?

6.21 cm

Some people think a pendulum with a period of 1.00 s can be driven with “mental energy” or psycho kinetically, because its period is the same as an average heartbeat. True or not, what is the length of such a pendulum?

What is the period of a 1.00-m-long pendulum?

2.01 s

How long does it take a child on a swing to complete one swing if her center of gravity is 4.00 m below the pivot?

The pendulum on a cuckoo clock is 5.00 cm long. What is its frequency?

2.23 Hz

Two parakeets sit on a swing with their combined center of mass 10.0 cm below the pivot. At what frequency do they swing?

(a) A pendulum that has a period of 3.00000 s and that is located where the acceleration due to gravity is $9\text{.}\text{79}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ is moved to a location where it the acceleration due to gravity is $9\text{.}\text{82}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$. What is its new period? (b) Explain why so many digits are needed in the value for the period, based on the relation between the period and the acceleration due to gravity.

(a) 2.99541 s

(b) Since the period is related to the square root of the acceleration of gravity, when the acceleration changes by 1% the period changes by $(0\text{.}\text{01}{)}^{2}=0\text{.}\text{01\%}\text{}$ so it is necessary to have at least 4 digits after the decimal to see the changes.

A pendulum with a period of 2.00000 s in one location $\left(g=9\text{.}\text{80}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}\right)$ is moved to a new location where the period is now 1.99796 s. What is the acceleration due to gravity at its new location?

(a) What is the effect on the period of a pendulum if you double its length?

(b) What is the effect on the period of a pendulum if you decrease its length by 5.00%?

(a) Period increases by a factor of 1.41 ($\sqrt{2}$)

(b) Period decreases to 97.5% of old period

Find the ratio of the new/old periods of a pendulum if the pendulum were transported from Earth to the Moon, where the acceleration due to gravity is $1\text{.}\text{63}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$.

At what rate will a pendulum clock run on the Moon, where the acceleration due to gravity is $1\text{.}\text{63}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$, if it keeps time accurately on Earth? That is, find the time (in hours) it takes the clock’s hour hand to make one revolution on the Moon.

Slow by a factor of 2.45

Suppose the length of a clock’s pendulum is changed by 1.000%, exactly at noon one day. What time will it read 24.00 hours later, assuming it the pendulum has kept perfect time before the change? Note that there are two answers, and perform the calculation to four-digit precision.

If a pendulum-driven clock gains 5.00 s/day, what fractional change in pendulum length must be made for it to keep perfect time?

length must increase by 0.0116%.

### Tập tin đính kèm

- pendulum-lab_en.jar

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation