Motors are the most common application of magnetic force on current-carrying wires. Motors have loops of wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical energy is converted to mechanical work in the process. (See [link].)

Let us examine the force on each segment of the loop in [link] to find the torques produced about the axis of the vertical shaft. (This will lead to a useful equation for the torque on the loop.) We take the magnetic field to be uniform over the rectangular loop, which has width $w$ and height $l$. First, we note that the forces on the top and bottom segments are vertical and, therefore, parallel to the shaft, producing no torque. Those vertical forces are equal in magnitude and opposite in direction, so that they also produce no net force on the loop. [link] shows views of the loop from above. Torque is defined as $\tau =\text{rF}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $, where $F$ is the force, $r$ is the distance from the pivot that the force is applied, and $\theta $ is the angle between $r$ and $F$. As seen in [link](a), right hand rule 1 gives the forces on the sides to be equal in magnitude and opposite in direction, so that the net force is again zero. However, each force produces a clockwise torque. Since $r=w/2$, the torque on each vertical segment is $(w/2)F\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $, and the two add to give a total torque.

Now, each vertical segment has a length $l$ that is perpendicular to $B$, so that the force on each is $F=\text{IlB}$. Entering $F$ into the expression for torque yields

If we have a multiple loop of $N$ turns, we get $N$ times the torque of one loop. Finally, note that the area of the loop is $A=\text{wl}$; the expression for the torque becomes

This is the torque on a current-carrying loop in a uniform magnetic field. This equation can be shown to be valid for a loop of any shape. The loop carries a current $I$, has $N$ turns, each of area $A$, and the perpendicular to the loop makes an angle $\theta $ with the field $B$. The net force on the loop is zero.

Find the maximum torque on a 100-turn square loop of a wire of 10.0 cm on a side that carries 15.0 A of current in a 2.00-T field.

**Strategy**

Torque on the loop can be found using $\tau =\text{NIAB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $. Maximum torque occurs when $\theta =\text{90\xba}$ and $\text{sin}\phantom{\rule{0.25em}{0ex}}\theta =1$.

**Solution**

For $\text{sin}\phantom{\rule{0.25em}{0ex}}\theta =1$, the maximum torque is

Entering known values yields

**Discussion**

This torque is large enough to be useful in a motor.

The torque found in the preceding example is the maximum. As the coil rotates, the torque decreases to zero at $\theta =0$. The torque then *reverses* its direction once the coil rotates past $\theta =0$. (See [link](d).) This means that, unless we do something, the coil will oscillate back and forth about equilibrium at $\theta =0$. To get the coil to continue rotating in the same direction, we can reverse the current as it passes through $\theta =0$ with automatic switches called *brushes*. (See [link].)

Meters, such as those in analog fuel gauges on a car, are another common application of magnetic torque on a current-carrying loop. [link] shows that a meter is very similar in construction to a motor. The meter in the figure has its magnets shaped to limit the effect of $\theta $ by making $B$ perpendicular to the loop over a large angular range. Thus the torque is proportional to $I$ and not $\theta $. A linear spring exerts a counter-torque that balances the current-produced torque. This makes the needle deflection proportional to $I$. If an exact proportionality cannot be achieved, the gauge reading can be calibrated. To produce a galvanometer for use in analog voltmeters and ammeters that have a low resistance and respond to small currents, we use a large loop area $A$, high magnetic field $B$, and low-resistance coils.

# Section Summary

- The torque $\tau $ on a current-carrying loop of any shape in a uniform magnetic field. is
$\tau =\text{NIAB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta ,$where $N$ is the number of turns, $I$ is the current, $A$ is the area of the loop, $B$ is the magnetic field strength, and $\theta $ is the angle between the perpendicular to the loop and the magnetic field.

# Conceptual Questions

Draw a diagram and use RHR-1 to show that the forces on the top and bottom segments of the motor’s current loop in [link] are vertical and produce no torque about the axis of rotation.

# Problems & Exercises

(a) By how many percent is the torque of a motor decreased if its permanent magnets lose 5.0% of their strength? (b) How many percent would the current need to be increased to return the torque to original values?

(a) $\text{\tau}$ decreases by 5.00% if B decreases by 5.00%

(b) 5.26% increase

(a) What is the maximum torque on a 150-turn square loop of wire 18.0 cm on a side that carries a 50.0-A current in a 1.60-T field? (b) What is the torque when $\theta $ is $\text{10}\text{.}\mathrm{9\xba?}$

Find the current through a loop needed to create a maximum torque of $9\text{.}\text{00 N}\cdot \text{m.}$ The loop has 50 square turns that are 15.0 cm on a side and is in a uniform 0.800-T magnetic field.

10.0 A

Calculate the magnetic field strength needed on a 200-turn square loop 20.0 cm on a side to create a maximum torque of $\text{300 N}\cdot \text{m}$ if the loop is carrying 25.0 A.

Since the equation for torque on a current-carrying loop is $\tau =\text{NIAB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta $, the units of $\mathrm{N}\cdot \mathrm{m}$ must equal units of $\mathrm{A}\cdot {\mathrm{m}}^{2}\phantom{\rule{0.25em}{0ex}}\mathrm{T}$. Verify this.

$A\cdot {m}^{2}\cdot T=A\cdot {m}^{2}\left(\frac{N}{A\cdot m}\right)=N\cdot m$.

(a) At what angle $\theta $ is the torque on a current loop 90.0% of maximum? (b) 50.0% of maximum? (c) 10.0% of maximum?

A proton has a magnetic field due to its spin on its axis. The field is similar to that created by a circular current loop $0\text{.}\text{650}\times {\text{10}}^{-\text{15}}\phantom{\rule{0.25em}{0ex}}\mathrm{m}$ in radius with a current of $1\text{.}\text{05}\times {\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\mathrm{A}$ (no kidding). Find the maximum torque on a proton in a 2.50-T field. (This is a significant torque on a small particle.)

$3\text{.}\text{48}\times {\text{10}}^{-\text{26}}\phantom{\rule{0.25em}{0ex}}\mathrm{N}\cdot \mathrm{m}$

(a) A 200-turn circular loop of radius 50.0 cm is vertical, with its axis on an east-west line. A current of 100 A circulates clockwise in the loop when viewed from the east. The Earth’s field here is due north, parallel to the ground, with a strength of $3\text{.}\text{00}\times {\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\mathrm{T}$. What are the direction and magnitude of the torque on the loop? (b) Does this device have any practical applications as a motor?

Repeat [link], but with the loop lying flat on the ground with its current circulating counterclockwise (when viewed from above) in a location where the Earth’s field is north, but at an angle $\text{45}\text{.}\mathrm{0\xba}$ below the horizontal and with a strength of $\text{6.}\text{00}\times {\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\mathrm{T}$.

(a) $\text{0.666 N}\cdot \mathrm{m}$ west

(b) This is not a very significant torque, so practical use would be limited. Also, the current would need to be alternated to make the loop rotate (otherwise it would oscillate).

- College Physics
- Preface
- Introduction: The Nature of Science and Physics
- Kinematics
- Introduction to One-Dimensional Kinematics
- Displacement
- Vectors, Scalars, and Coordinate Systems
- Time, Velocity, and Speed
- Acceleration
- Motion Equations for Constant Acceleration in One Dimension
- Problem-Solving Basics for One-Dimensional Kinematics
- Falling Objects
- Graphical Analysis of One-Dimensional Motion

- Two-Dimensional Kinematics
- Dynamics: Force and Newton's Laws of Motion
- Introduction to Dynamics: Newton’s Laws of Motion
- Development of Force Concept
- Newton’s First Law of Motion: Inertia
- Newton’s Second Law of Motion: Concept of a System
- Newton’s Third Law of Motion: Symmetry in Forces
- Normal, Tension, and Other Examples of Forces
- Problem-Solving Strategies
- Further Applications of Newton’s Laws of Motion
- Extended Topic: The Four Basic Forces—An Introduction

- Further Applications of Newton's Laws: Friction, Drag, and Elasticity
- Uniform Circular Motion and Gravitation
- Work, Energy, and Energy Resources
- Linear Momentum and Collisions
- Statics and Torque
- Rotational Motion and Angular Momentum
- Introduction to Rotational Motion and Angular Momentum
- Angular Acceleration
- Kinematics of Rotational Motion
- Dynamics of Rotational Motion: Rotational Inertia
- Rotational Kinetic Energy: Work and Energy Revisited
- Angular Momentum and Its Conservation
- Collisions of Extended Bodies in Two Dimensions
- Gyroscopic Effects: Vector Aspects of Angular Momentum

- Fluid Statics
- Fluid Dynamics and Its Biological and Medical Applications
- Introduction to Fluid Dynamics and Its Biological and Medical Applications
- Flow Rate and Its Relation to Velocity
- Bernoulli’s Equation
- The Most General Applications of Bernoulli’s Equation
- Viscosity and Laminar Flow; Poiseuille’s Law
- The Onset of Turbulence
- Motion of an Object in a Viscous Fluid
- Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

- Temperature, Kinetic Theory, and the Gas Laws
- Heat and Heat Transfer Methods
- Thermodynamics
- Introduction to Thermodynamics
- The First Law of Thermodynamics
- The First Law of Thermodynamics and Some Simple Processes
- Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
- Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
- Applications of Thermodynamics: Heat Pumps and Refrigerators
- Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
- Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

- Oscillatory Motion and Waves
- Introduction to Oscillatory Motion and Waves
- Hooke’s Law: Stress and Strain Revisited
- Period and Frequency in Oscillations
- Simple Harmonic Motion: A Special Periodic Motion
- The Simple Pendulum
- Energy and the Simple Harmonic Oscillator
- Uniform Circular Motion and Simple Harmonic Motion
- Damped Harmonic Motion
- Forced Oscillations and Resonance
- Waves
- Superposition and Interference
- Energy in Waves: Intensity

- Physics of Hearing
- Electric Charge and Electric Field
- Introduction to Electric Charge and Electric Field
- Static Electricity and Charge: Conservation of Charge
- Conductors and Insulators
- Coulomb’s Law
- Electric Field: Concept of a Field Revisited
- Electric Field Lines: Multiple Charges
- Electric Forces in Biology
- Conductors and Electric Fields in Static Equilibrium
- Applications of Electrostatics

- Electric Potential and Electric Field
- Electric Current, Resistance, and Ohm's Law
- Circuits, Bioelectricity, and DC Instruments
- Magnetism
- Introduction to Magnetism
- Magnets
- Ferromagnets and Electromagnets
- Magnetic Fields and Magnetic Field Lines
- Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Force on a Moving Charge in a Magnetic Field: Examples and Applications
- The Hall Effect
- Magnetic Force on a Current-Carrying Conductor
- Torque on a Current Loop: Motors and Meters
- Magnetic Fields Produced by Currents: Ampere’s Law
- Magnetic Force between Two Parallel Conductors
- More Applications of Magnetism

- Electromagnetic Induction, AC Circuits, and Electrical Technologies
- Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
- Induced Emf and Magnetic Flux
- Faraday’s Law of Induction: Lenz’s Law
- Motional Emf
- Eddy Currents and Magnetic Damping
- Electric Generators
- Back Emf
- Transformers
- Electrical Safety: Systems and Devices
- Inductance
- RL Circuits
- Reactance, Inductive and Capacitive
- RLC Series AC Circuits

- Electromagnetic Waves
- Geometric Optics
- Vision and Optical Instruments
- Wave Optics
- Introduction to Wave Optics
- The Wave Aspect of Light: Interference
- Huygens's Principle: Diffraction
- Young’s Double Slit Experiment
- Multiple Slit Diffraction
- Single Slit Diffraction
- Limits of Resolution: The Rayleigh Criterion
- Thin Film Interference
- Polarization
- *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

- Special Relativity
- Introduction to Quantum Physics
- Atomic Physics
- Introduction to Atomic Physics
- Discovery of the Atom
- Discovery of the Parts of the Atom: Electrons and Nuclei
- Bohr’s Theory of the Hydrogen Atom
- X Rays: Atomic Origins and Applications
- Applications of Atomic Excitations and De-Excitations
- The Wave Nature of Matter Causes Quantization
- Patterns in Spectra Reveal More Quantization
- Quantum Numbers and Rules
- The Pauli Exclusion Principle

- Radioactivity and Nuclear Physics
- Medical Applications of Nuclear Physics
- Particle Physics
- Frontiers of Physics
- Atomic Masses
- Selected Radioactive Isotopes
- Useful Information
- Glossary of Key Symbols and Notation