Tài liệu

Về bệnh di truyền

Science and Technology

Các dạng bệnh di truyền

Có một nhóm đa dạng các bệnh lý và rối loạn gây ra do các đột biến gen và sự thay đổi bất thường của nhiễm sắc thể. Các rối loạn có bản chất di truyền và có thể chia làm 3 nhóm chính:

Các sai hỏng đơn gen

Các sai hỏng đơn gen còn được gọi là các rối loạn di truyền Mendel (Mendelian disorders), các rối loạn đơn gen (monogenic disorders), hay các rối loạn đơn locut (single locus disorders). Đây là một nhóm các dạng bệnh lý gây ra do sự có mặt của một gen đột biến trong cơ thể bị bệnh. Đột biến gen làm thay đổi thông tin mã hóa của gen đó và, hoặc dẫn đến việc tạo ra phân tử protein bị sai hỏng về chức năng, hoặc thậm trí ức chế hoàn toàn sự tổng hợp protein mà gen đó mã hóa. Sự thiếu hụt protein do đột biến gen gây nên sự biểu hiện của các trạng thái bệnh lý. Đột biến gen có thể được di truyền giữa các thế hệ (từ bố, mẹ sang con, cháu) hoặc xuất hiện một cách tự phát (de novo) trong tế bào sinh dục (tinh trùng hoặc trứng) trong cơ thể bố hoặc mẹ, và sau thụ tinh, đứa trẻ hình thành mang đột biến trong mọi tế bào.

Các rối loạn nhiễm sắc thể

Có các dạng bệnh lý gây ra do sự mất đi hoặc thêm vào một hoặc một số nhiễm sắc thể, hay do sự thay đổi cấu trúc của nhiễm sắc thể. Phần lớn các rối loạn bất thường về nhiễm sắc thể xuất hiện ngay trong các tế bào sinh dục của cơ thể bố hoặc mẹ, nhưng cũng có những trường hợp gây ra do di truyền từ thế hệ trước. Các dạng bất thường về số lượng nhiễm sắc thể (biến dị số lượng nhiễm sắc thể) có thể biểu hiện bằng sự tăng lên số lượng bộ nhiễm sắc thể đơn bội (hiện tượng đa bội thể), hoặc do sự thêm và hoặc mất đi của từng nhiễm sắc thể riêng lẻ (hiện tượng lệch bội). Các dạng bất thường về cấu trúc nhiễm sắc thể có thể gây ra do sự đứt gẫy nhiễm sắc thể liên quan đến các hiện tượng mất đoạn, lặp đoạn hoặc đảo đoạn nhiễm sắc thể.

Các rối loạn đa nhân tố

Đây là một nhóm gồm nhiều bệnh phổ biến, ví dụ như đái tháo đường, các bệnh mạch vành và phần lớn các dị tất bẩm sinh. Các bệnh này gây ra do ảnh hưởng của nhiều gen theo các cơ chế bệnh lý phức tạp cho đến nay chưa được hiểu biết đầy đủ, nhưng được biết có liên quan đến sự tương tác của nhiều gen với nhau, hoặc giữa các gen với các yếu tố môi trường.

Trong khoảng 20 năm qua, nhờ sự phát triển của công nghệ ADN tái tổ hợp, đã có nhiều phát hiện mới mang tính bước ngoặt liên quan đến các bệnh lý do rối loạn đơn gen gây ra. Thông tin được nêu trong phần dưới đây liên quan đến một số rối loạn bệnh lý như vậy.

Hình thức di truyền

Các rối loạn di truyền đơn gen được truyền từ thế hệ bố, mẹ sang thế hệ con, cháu. Có ba hình thức di truyền phổ biến: di truyền trội trên nhiễm sắc thể thường, di truyền lặn trên nhiễm sắc thể thườngdi truyền liên kết nhiễm sắc thể X (Bảng 1).

Trong trường hợp bệnh di truyền do alen trội nằm trên nhiễm sắc thể thường quy định, việc truyền một alen gây bệnh từ bố hoặc mẹ sang con là đủ để cá thể con biểu hiện bệnh. Các cá thể bị bệnh có một alen bình thường và một alen đột biến gây bệnh được gọi là các thể dị hợp tử. Các cá thể này có nguy cơ truyền cho 50 % số con alen đột biến và biểu hiện bệnh (hình 7a).

Trong trường hợp bệnh di truyền do alen lặn nằm trên nhiễm sắc thể thường quy định, cá thể biểu hiện bệnh phải mang đủ một cặp alen đột biến gây bệnh, một bắt nguồn từ bố, một từ mẹ. Cá thể biểu hiện bệnh trong trường hợp này gọi là cá thể đồng hợp từ về alen đột biến. Các cá thể dị hợp tử với một alen gây bệnh không biểu hiện bệnh nhưng có khả năng truyền alen gây bệnh sang 50% số cá thể con. Đối cả bố và mẹ là các cá thể dị hợp tử mang alen lặn gây bệnh trên nhiễm sắc thể thường, một phần tư số con biểu hiện bệnh, một phần tư bình thường và một nửa số cá thể con là thể mang alen gây bệnh nhưng không biểu hiện bệnh (hình 7b).

Trong trường hợp bệnh di truyền liên kết với nhiễm sắc thể X, gen đột biến gây bệnh chỉ xuất hiện trên nhiễm sắc thể X. Do con đực chỉ có một nhiễm sắc thể X duy nhất, việc truyền alen đột biến sang cá thể con giới đực là đủ để cá thể này biểu hiện bệnh. Các cá thể đực biểu hiện bệnh gọi là các cá thể dị giao tử. Các con cái có hai nhiễm sắc thể X vì vậy thường không biểu hiện bệnh do phần lớn các gen đột biến gây bệnh nằm trên nhiễm sắc thể X là các alen lặn. Đối với các con cái là cá thể mang gen gây bệnh nhưng không biểu hiện bệnh, 50% con đực thế hệ con có nguy cơ bị bệnh và 50% con cái là thể mang gen gây bệnh nhưng không biểu hiện bệnh (hình 7c).

(a) Alen trội trên NST thường. Sự di truyền của một alen đột biến duy nhất (a) đều dẫn đến sự biểu hiện của bệnh. (b) Alen lặn trên NST thường. Các cá thể bị bệnh phải mang hai alen đột biến (aa). Các cá thể dị hợp tử (Aa) là các thể mang. (c) Alen liên kết NST X, đối với các thể mang là cái, 50% số cá thể con giới đực bị bệnh, và 50% số cá thể con giới cái là thể mang.

Một số bệnh lý di truyền đơn gen

Một số bệnh lý di truyền đơn gen
Bệnh lý Tần số trên 1000 trẻ Hình thức di truyền Gen đột biến Đặc điểm
Máu khó đông dạng A 0,1 Liên kết NST X Nhân tố VIII Chảy máu bất thường
Máu khó đông dạng B 0,03 Liên kết NST X Nhân tố IX Chảy máu bất thường
Loạn dưỡng cơ Duchene 0,3 Liên kết NST X Dystrophin Hao mòn cơ
Loạn dưỡng cơ Becker 0,05 Liên kết NST X Dystrophin Hao mòn cơ
Hội chứng NST X yếu 0,5 Liên kết NST X FMR1 Chậm phát triển trí tuệ
Bệnh múa giật Huntington 0,5 Trội, trên NST thường Hungtingtin Chứng tâm thần phân liệt
U sơ thần kinh 0,4 Trội, trên NST thường NF-1,2 Ung thư
Hội chứng thalassemi 0,05 Lặn, trên NST thường Các gen globin Thiếu máu
Thiếu máu hồng cầu hình liềm 0,1 Lặn, trên NST thường β - globin Thiếu máu; Thiếu máu cục bộ
Phenylketo niệu 0,1 Lặn, trên NST thường Phenylalanine-hydroxylase Không có khả năng chuyển hóa phenylalanin
Hóa xơ nang 0,4 Lặn, trên NST thường CFTR Bệnh hỏng phổi tích lũy và các triệu chứng khác

Để có sự cân bằng giữa con đực và con cái về lượng sản phẩm do gen nằm trên nhiễm sắc thể X mã hóa, trong tự nhiên có hiện tượng một trong hai nhiễm sắc thể X trong tế bào con cái bị bất hoạt. Quá trình này được gọi là hiện tượng Lyon hóa (giả thiết Lyon) và thường diễn ra trong quá trình phát triển của phôi. Trong mỗi tế bào, nhiễm sắc thể X bị bất hoạt được “chọn” một cách ngẫu nhiên. Tuy vậy, một số con cái là thể mang gen gây bệnh nằm trên nhiễm sắc thể X có thể biểu hiện bệnh ở mức độ nhẹ do sự bất hoạt của nhiễm sắc thể X bình thường.

Sai hỏng đơn gen

Có nhiều bệnh di truyền do gen đơn quy định xuất hiện ở người (Bảng 7). Các bệnh này có các đặc điểm biểu hiện đa dạng khác nhau và hậu quả đối với các cá thể bị bệnh cũng khác nhau tùy thuộc vào mức độ quan trọng của gen bị đột biến và bản chất của loại đột biến xuất hiện. Một số bệnh, như bệnh máu khó đông, gây nên các triệu chứng bệnh có thể điều trị được, nhưng các bệnh khác chẳng hạn như hội chứng múa giật Huntington, đến nay chưa có biện pháp điều trị triệt để và người bệnh thường chết khi còn trẻ.

Các bệnh di truyền do đơn gen quy định thường xuất hiện với tần số tương đối thấp nằm trong khoảng giữa 0,01 đến 5,0 trường hợp trong 1000 em bé sơ sinh. Tần số các rối loạn di truyền này thường khác nhau trong các chủng tộc người khác nhau. Chẳng hạn, tần số bệnh nhân bị xơ nang là cao nhất ở các nước Bắc Âu, bệnh thiếu máu hồng cầu hình liềm xảy ra với tần số cao nhất ở Châu Phi và bệnh β-thalassemia phổ biến hơn cả trong các quần thể Châu á. Đối với các bệnh di truyền đơn gen phổ biến nhất ở người đến nay đã xác định và tách dòng được gen gây bệnh đồng thời xác định được các đột biến gây bệnh.

Các đột biến trong sai hỏng đơn gen

Có thể chia các loại đột biến tạo ra các alen gây bệnh thành hai loại chính: các đột biến điểm liên quan đến sự thay đổi của một bazơ nitơ duy nhất và các đột biến lớn liên quan đến sự thay đổi trình tự ADN với kích thước lớn hơn. Đối với mỗi loại bệnh, có thể có vài dạng đột biến khác nhau. Ngoài ra, các cá thể bị bệnh cũng có thể cùng lúc mang các gen đột biến khác nhau. Ví dụ, có khoảng 20% trường hợp bị bệnh máu khó động dạng A do kết quả của đột biến lớn gây ra. Các trường hợp còn lại là do các dạng đột biến điểm mà đến nay các nhà nghiên cứu đã tìm ra và mô tả 250 kiểu đột biến khác nhau.

Các đột biến điểm

Các đột biến điểm gây nên các bệnh di truyền có thể chia thành một số kiểu sau:

Các đột biến sai nghĩa (misense mutations).

Đây là những thay đổi của các nucleotit trên phân tử ADN gây nên sự thay đổi bộ ba mã hóa cho một axit amin dẫn đến sự thay thế bởi một loại axit amin khác trên phân tử protein. Các đột biến sai nghĩa gây nên những hậu quả khác nhau đối với phân tử protein được mã hóa. Do hiện tượng thoái hóa của mã di truyền, những thay đổi liên quan đến vị trí bazơ thứ ba trong bộ ba mã hóa thường không có ảnh hưởng đến phân tử protein. Ngoài ra, nhiều sự thay đổi thành phần bazơ nitơ dẫn đến sự thay thế của axit amin có đặc tính tương tự có thể không làm thay đổi chức năng và hoạt tính của phân tử protein. Chẳng hạn như đột biến ở bộ ba mã hóa CTT thành ATT làm thay thế axit amin kị nước là leucin bằng isoleucin cũng là một axit amin kị nước khác. Tuy vậy, có nhiều ví dụ cho thấy các đột biến sai nghĩa làm thay đổi rõ rệt chức năng của phân tử protein được mã hóa và vì vậy gây nên các bệnh di truyền. Trong số này có thể kể đến đột biến thay thế A bằng T trong gen mã hóa β-globin, một trong các chuỗi polypeptit hình thành nên phân tử hemoglobin. Đột biến này làm thay đổi bộ ba số sáu của gen thay đổi từ GAG mã hóa cho axit glutamic thành GTG mã hóa cho valin. Đột biến này gây nên bệnh thiếu máu hồng cầu hình liềm do các tế bào hồng cầu bị biến dạng thành hình liềm do thay đổi sự kết dính của các phân tử hemoglobin. Các tế bào hồng cầu hình liềm có tuổi thọ ngắn gây nên hiện tượng thiếu máu và nằm trong các mao mạch làm giảm khả năng cung cấp máu tới các cơ quan (chứng thiếu máu cục bộ).

Các đột biến vô nghĩa.

Đây là những thay đổi của các nucleotit trên phân tử ADN làm chuyển một mã bộ ba mã hóa axit amin thành một mã bộ ba kết thúc vì vậy quá trình phiên mã sẽ kết thúc sớm hơn bình thường và dẫn đến sự hình thành phân tử protein có kích thước ngắn hơn. Các đột biến vô nghĩa thường gây hậu quả nghiêm trọng đối với phân tử protein được mã hóa, đặc biệt khi nó xuất hiện gần đầu 5’ của gen. Nhiều bệnh di truyền khác nhau đã được xác định có liên quan đến các đột biến vô nghĩa. Ví dụ như đột biến C thành T ở bộ ba số 39 trong gen mã hóa β-globin làm thay đổi mã bộ ba bình thường CAG quy định glutamin thành TAG là một bộ ba mã kết thúc. Đột biến này gây nên sự kết thúc phiên mã sớm của phân tử mARN mã hóa cho β-globin dẫn đến sự thiếu hụt một chuỗi polypeptit β và gây nên dạng bệnh lý gọi là β-thalassemia với triệu chứng bệnh thiếu máu do phân tử hemoglobin bình thường không được tạo thành.

Các đột biến dịch khung.

Những đột biến này xảy ra do sự thêm vào hay mất đi của một hay một số bazơ nitơ làm thay đổi khung đọc và một tập hợp các bộ ba mã hóa mới được hình thành kể từ điểm đột biến xảy ra. Đột biến dịch khung cũng thường gây nên hậu quả nghiêm trọng đối với phân tử protein được mã hóa, đặc biệt khi đột biến xuất hiện gần đầu 5’ của gen. Nhiều bệnh lý được mô tả liên quan đến đột biến dịch khung. Chẳng hạn đột biến dịch khung đã được tìm thấy là nguyên nhân gây nên bệnh máu khó đông ở nhiều bệnh nhân mắc căn bệnh này. Trong đó bao gồm các trường hợp do mất đi 4 bazơ nitơ gây nên sự thay đổi khung đọc từ bộ ba mã hóa thứ 50 và một đột biến thêm 10 bazơ làm thay đổi khung đọc từ bộ ba mã hóa thứ 38. Cả hai kiểu đột biến này đều gây triệu chứng bệnh nghiêm trọng.

Đột biến vị trí cắt intron.

Đây là những đột biến làm thay đổi trình tự tín hiệu ở gần đầu 3’ hoặc 5’ của các đoạn intron dẫn đến việc cắt intron sai trong quá trình hoàn thiện phân tử mARN ở sinh vật nhân chuẩn. Các đột biến kiểu này cũng có thể xảy ra bên trong intron tạo nên điểm cắt intron mới và vì vậy cũng dẫn đến sự cắt sai trình tự intron. Một loạt các đột biến vị trí cắt intron được tìm thấy liên quan đến đột biến gen β-globin làm thiếu hoàn toàn các chuỗi β-globin trong các cơ thể đồng hợp tử và gây bệnh β-thalassemia.

Đột biến trình tự gen điều hòa.

Các đột biến này xảy ra tương đối hiếm và ảnh hưởng đến việc điều hòa hoạt động của gen, thường hoặc làm giảm hoặc làm tăng mức độ biểu hiện của gen. Một đột biến như vậy đã được xác định trong trình tự chỉ huy của gen mã hóa protein đông máu (là protein yếu tố IX) cũng là một nguyên nhân gây nên bệnh máu khó đông. Các cá thể mang đột biến này không tạo được protein yếu tố IX và bị chảy máu một cách bất thường. Thông thường, triệu chứng bệnh thường mất đi sau tuổi dậy thì nhờ hócmôn steroid kích thích sự biểu hiện của gen này.

Các đột biến lớn

Có nhiều bệnh lý gây ra do các đột biến liên quan đến một trình tự dài các nucleotit trên phân tử ADN. Phần lớn các đột biến này có ảnh hưởng nghiêm trọng đến chức năng của gen và gây bệnh nặng.

Các đột biến mất đoạn.

Sự mất đi của gen có thể biểu hiển với mức độ kích thước khác nhau, từ một vài bazơ nitơ đến toàn bộ gen, thậm trí nhiều gen cùng lúc. Sự mất đi hoàn toàn của các gen mã hóa β-globin gây nên bệnh β-thalassemia (bệnh mất khả năng sản xuất hemoglobin bình thường). Ví dụ như, sự mất một phần gen mã hóa dystrophin gây nên bệnh mòn cơ, bệnh loạn dưỡng cơ; hay sự mất đi một bộ ba mã hóa duy nhất trong gen tổng hợp protein điều hòa độ dẫn xuyên màng trong bệnh xơ nang CFTR (cystic fibrosis transmembrane conductance regulator) là nguyên nhân gây bệnh gặp phải ở 70% số bệnh nhân bị bệnh xơ nang.

Các đột biến thêm đoạn.

Nhiều đột biến thêm đoạn đã được ghi nhận. Ví dụ như một trường hợp một bệnh nhân bị máu khó đông dạng A hiếm gặp có nguyên nhân gây bệnh là do sự thêm vào gen mã hóa yếu tố VIII một trình tự lặp lại gọi là yếu tố LINE.

Các đột biến thay thế đoạn gen.

Cũng có nhiều đột biến thay thế đoạn gen gây nên bệnh di truyền đã được ghi nhận. Ví dụ như một đột biến gây bệnh máu khó đông dạng A xảy ra do sự tái tổ hợp giữa các trình tự nằm trong vùng intron thứ 22 của gen mã hóa yếu tố VIII và các trình tự lặp lại kép dọc theo nhiễm sắc thể X. Do một lỗi xảy ra trong quá trình tái tổ hợp, gen mã hóa yếu tố VIII bị cắt thành 2 mảnh tách biệt nhau bởi hàng triệu cặp bazơ nitơ, làm mất hoàn toàn chức năng của gen này.

Các đột biến lặp lại bộ ba nucleotit.

Một dạng đột biến gen hiếm gặp liên quan đến các trình tự lặp lại từng bộ ba nucleotit kém bền vững. Trong quá trình giảm phân xảy ra hiện tượng số lượng bản sao các trình tự lặp lại từng bộ ba nucleotit tăng lên trong các tế bào sinh dục dẫn đến sự biểu hiện của bệnh trong các thế hệ sau. Cơ chế dẫn đến hiện tượng lặp lại nhiều lần của các trình tự nucleotit và nguyên lý gây bệnh cho đến nay chưa được biệt rõ. Sự tăng lên số lượng các trình tự lặp lại tìm thấy liên quan đến một số bệnh di truyền bao gồm bệnh múa giật Hungtington.

Về một số bệnh di truyền

Trao đổi chéo trong nguyên phân có thể tạo ra thể khảm về di truyền và một số bệnh ung thư ở người

Trao đổi chéo là một đặc tính quan trọng của quá trình giảm phân. Phức hệ trao đổi chéo “xác định” vị trí tái tổ hợp đồng thời giữ cho các NST tương đồng gắn kết với nhau, cho phép chúng thành từng cặp tiến về mặt phẳng xích đạo tại kỳ giữa của giảm phân I, rồi sau đó phân ly về hai cực đối diện của tế bào. Ngoài ra, TĐC trong giảm phân là một cơ chế góp phần làm tăng tính đa dạng của các dạng của các loại giao tử. Vì vậy, không có gì là ngạc nhiên khi các cơ thể sinh vật nhân chuẩn biểu hiện một sự đa dạng lớn về các loại enzym tham gia khởi đầu đặc hiệu sự TĐC trong giảm phân. TĐC cũng có thể xuất hiện trong nguyên phân. Tuy vậy, không giống sự kiện diễn ra trong giảm phân, TĐC trong nguyên phân thường xảy ra do lỗi xuất hiện trong quá trình tái bản NST hoặc do bị chiếu xạ dẫn đến sự đứt gãy của các phân tử ADN, chứ không phải là một chương trình được điều hòa bình thường của tế bào như trong giảm phân. Vì vậy, TĐC trong nguyên phân là một sự kiện hiếm khi xảy ra, chỉ xuất hiện với tần số thấp hơn 10-6 lần phân bào nguyên nhiễm. Tuy vậy, việc nuôi cấy các tế bào nấm men và quá trình phát triển của một cơ thể đa bào phức tạp có số lần phân chia tế bào đủ lớn để các nhà di truyền học có thể hàng ngày phát hiện và theo dõi được hiện tượng TĐC trong nguyên phân vốn xảy ra với tần số thấp này. Khác với trong giảm phân, TĐC xảy ra trong nguyên phân xảy ra ngẫu nhiên ở một số ít các tế bào soma, tạo nên những tế bào soma mang “hệ gen” khác nhau. Do vậy, những cá thể mang những tế bào soma chứa các NST bị TĐC được gọi là các thể khảm.

ở người, một số TĐC xảy ra trong nguyên phân có thể gây nên sự hình thành khối u (ví dụ: một số bệnh u mắt). ở một số quần thể người, số trẻ sơ sinh có bẩm chất di truyền có nguy cơ bị ung thư có tần số vào khoảng 1/20.000 trẻ sơ sinh. Gen gây khối u võng mạc (RB) nằm trên NST số 13, trong khi alen kiểu dại bình thường (RB+) mã hóa cho một loại protein điều hòa sự phát triển và biệt hóa của võng mạc. Các tế bào trong mắt cần ít nhất một bản sao của alen kiểu dại để duy trì sự điều hòa hoạt động phân chia của tế bào. Một đột biến trong alen RB+ có thể dẫn đến làm hỏng chức năng của alen kiểu dại và được ký hiệu là RB-. Nừu một tế bào mất đi cả hai bản sao của RB+, thì nó mất đi khả năng điều hòa hoạt động phân chia tế bào bình thường và gây nên sự hình thành khối u. Ví lý do này, alen kiểu dại RB+ có được xem là một gen ức chế sự hình thành khối u.

Những cá thể có bẩm chất di truyền có nguy cơ ung thư võng mạc được sinh ra mang một alen RB+ duy nhất. NST số 13 thứ hai của họ hoặc chỉ mang alen RB- hoặc hoàn toàn không có gen RB. Nếu một tác nhân đột biến (ví dụ: chiếu xạ) hay một lỗi xảy ra trong quá trình nguyên phân làm mất đi alen RB+ còn lại duy nhất ở một tế bào trong một hoặc hai mắt thì khối u võng mạc sẽ bắt đầu phát triển từ vị trí tế bào sai hỏng. Một nghiên cứu ở các bệnh nhân bị bệnh u võng mạc cho thấy sự xuất hiện của các tế bào mắt với kiểu gen đồng hợp tử RB-/RB-, trong khi tế bào bạch cầu của người bệnh là dạng dị hợp tử RB+/RB-. Như minh họa ở hình A, một TĐC trong nguyên phân giữa gen RB và tâm động của nhiễm sắc thể mang gen là cơ chế gây nên sự hình thành tế bào mang kiểu gen RB-/RB-. Khi tế bào này hình thành, nó được phân chia một cách không được kiểm soát và dẫn đến sự hình thành khối u.

Chỉ có 40% trường hợp bị bệnh ung thư võng mạc là có cơ chế gây bệnh như trên, còn 60% còn lại khi sinh ra có kiểu gen bình thường là RB+/RB+. ở những người này, hai đột biến phải cùng xảy ra ở cả hai bản sao của gen RB mới gây nên ung thư. Đột biến đầu tiến có thể dẫn đến alen RB+ bị chuyển thành RB-, còn sau đó các tế bào con xảy ra TĐC trong quá trình nguyên phân và dẫn đến sự phát triển ung thư do alen đột biến bị “đồng hợp tử” hóa.

Đáng chú ý là TĐC trong nguyên phân gây nên sự hình thành một số bệnh ung thư võng mạc đã giúp giải thích sự biểu hiện mức độ bệnh lý khác nhau. Những trẻ sơ sinh có kiểu gen RB+/RB- có thể không bị bệnh. Hoặc khi mắc bệnh, sự phát triển của khối u có thể xảy ra ở cả hai mắt, nhưng cũng có thể chỉ xảy ra ở một mắt. Tất cả những hiện tượng đó phụ thuộc vào việc tế bào nào trong cơ thể xảy ra hiện tượng TĐC trong nguyên phân.

Đột biến gen mã hóa các protein cảm thụ ánh sáng và thị lực

Những nghiên cứu đầu tiên mô tả sự bất thường trong khả năng cảm thụ ánh sáng ở người được bắt đầu từ khoảng 200 năm trước. Thời đó, người ta phát hiện ra nhiều đột biến có thể gây ảnh hưởng đến thị lực ở người. Bằng việc phân tích các kiểu hình liên quan đến mỗi loại đột biến và sau đó kiểm tra sự biến đổi của ADN. Ngày nay, chúng ta đã có những hiểu biết chi tiết hơn về cơ chế di truyền phân tử của tính trạng cảm nhận ánh sáng, màu sắc và các loại protein mà những gen này mã hóa.

Có một số dạng bệnh rối loạn cảm nhận màu sắc khác nhau ở người đã giúp việc phân tích và làm sáng tỏ cơ chế cảm nhận màu sắc ở người. Đầu tiên, các nhà nghiên cứu nhận biết và mô tả sự khác biệt trong cách những người có rối loạn về cảm nhận màu sắc nhìn thấy sự vật từ sự khác biệt nhỏ khi nhìn thấy mức độ màu đỏ, tới việc không phân biệt được màu đỏ và màu xanh lục, đến việc không nhìn thấy bất cứ màu nào. Thứ hai, sự phát triển khoa học tâm- sinh lý học cung cấp các phép thử để xác định và so sánh chính xác các kiểu hình. Chẳng hạn, một phép phân tích dựa trên sự kiện là mọi người có thể cảm nhận mỗi một màu như sự hòa trộn của ba dải bước sóng cơ bản tương ứng với màu đỏ, xanh dương (xanh lam) và xanh lục và có thể điều chỉnh tỉ lệ cường độ sáng của ba màu này để thu được một dải bước sóng tương ứng với một màu thứ tư, chẳng hạn màu vàng. Một người với thị lực bình thường, sẽ chọn một tỉ lệ màu thích hợp của màu đỏ và màu xanh lục để tạo nên màu vàng đặc thù, nhưng nếu một người không có khả năng phân biệt màu đỏ với màu xanh lục thì mọi sự kết hợp giữa hai màu này sẽ chỉ cho ra một màu giống nhau. Cuối cùng, do những biến dị di truyền liên quan đến thị giác hiếm khi gây ảnh hưởng đến hoạt động sinh sản hay tuổi thọ trong các xã hội người hiện đại, những đột biến này có thể tạo ra nhiều alen mới làm thay đổi khả năng cảm nhận màu sắc và những alen đột biến này được duy trì lâu dài trong quần thể.

Cơ sở phân tử và tế bào của sự cảm nhận màu sắc ở mắt

Các tế bào cảm nhận ánh sáng và màu sắc

Chúng ta cảm nhận được hình ảnh qua các nơron thần kinh ở võng mạc phần phía sau nhãn cầu (hình 8a). Những nơron này có hai loại: tế bào hình nón và tế bào hình que. Các tế bào hình que chiếm 95% số lượng các tế bào cảm nhận ánh sáng và được kích thích bởi các ánh sáng yếu trong các bước sóng ánh sáng. ở cường độ sáng lớn hơn, các tế bào hình que bị bão hòa và không còn chức năng gửi các tín hiệu thêm nữa đến não bộ. Lúc này, các tế bào hình nón sẽ tiếp quản chức năng này, xử lý các bước sóng ánh sáng của cường độ sáng mạnh và giúp chúng ta có thể phân biệt được các màu sắc. Các tế bào hình nón có ba loại. Loại thứ nhất chuyên hóa để cảm nhận ánh sáng đỏ, loại thứ hai cảm nhận ánh sáng xanh lục và loại thứ ba cảm nhận ánh sáng xanh dương. Đối với mỗi tế bào thụ quan ánh sáng như vậy, hoạt động cảm nhận ánh sáng bao gồm sự hấp thụ các photon từ ảnh sáng ở một dải bước sóng nhất định, chuyển các thông tin về số lượng và năng lượng của các photon thành các tín hiệu điện, và chuyển các tín hiệu đó qua tế bào thần kinh thị giác tới bộ não.

Bốn gen mã hóa bốn chuỗi polypeptit cảm nhận màu sắc

Các protein cảm nhận photon và khởi đầu quá trình truyền tín hiệu trong các tế bào hình nón là rhodopsin. Protein này là một chuỗi polypeptit duy nhất gồm 348 axit amin xếp thành một chuỗi zigzag xuyên màng tế bào (hình 8.b.1). Một axit amin lysine nằm trong chuỗi liên kết với một phân tử carotenoid sắc tố trên võng mạc có khả năng hấp thụ photon. Các axit amin ở gần vùng liên kết võng mạc cấu trúc nên vị trí hoạt động của rhodopsin. Bằng việc thay đổi vị trí võng mạc qua một cơ chế đặc biệt, các rhodopsin xác định sự đáp ứng lại ánh sáng của các tế bào võng mạc. Mỗi một tế bào hình que thường chứa khoảng 100 triệu phân tử rhodopsin trên lớp màng đặc thù của nó. Gen mã hóa tổng hợp rhodopsin ở người nằm trên NST số 3.

Protein có vai trò cảm nhận và khởi đầu quá trình truyền tín hiệu trong các tế bào hình nón đối với photon màu xanh dương có liên quan đến rhodopsin. Protein này cũng là một chuỗi polypeptit duy nhất gồm 348 axit amin và bao quanh một phân tử sắc tố của võng mạc. Gần 50% trên phân tử protein cảm nhận ánh sáng xanh dương là giống hệt trình tự của rhodopsin; phần còn lại có sự khác biệt giữa hai protein này và là phần đặc thù cho sự cảm nhận ánh sáng màu xanh dương (hình 8.b.2). Gen mã hóa protein cảm nhận ánh sáng xanh dương nằm trên NST số 7.

Cũng có quan hệ với protein rhodopsin là các protein cảm nhận ánh sáng màu đỏ và xanh lục nằm trong các tế bào hình nón màu đỏ và xanh lục. Hai protein này cũng chỉ gồm một chuỗi polypeptit duy nhất, gồm 364 axit amin, cũng liên kết với võng mạc và nằm xuyên qua màng tế bào (các hình 8.b.3 và 4). Cũng giống như protein cảm nhận màu xanh dương, các protein cảm nhận màu đỏ và xanh lục có khoảng gần 50% trình tự axit amin giống với rhodopsin; các protein này chỉ khác biệt nhau trung bình 4 / 100 axit amin. Mặc dù chỉ khác biệt nhau nhỏ như vậy, những protein này đủ để để biệt hóa hai loại tế bào hình nón mẫn cảm với các photon ánh sáng thuộc bước sóng khác nhau, là các tế bào hình nón màu đỏ và xanh lục. Cả hai gen mã hóa cho các protein màu đỏ và xanh lục đều nằm trên NST X thành một chuỗi kế tiếp nhau. Phần lớn mỗi NST X trong tế bào ở người mang một gen duy nhất mã hóa protein cảm nhận ánh sáng đỏ, còn có từ một đến ba bản sao gen mã hóa protein cảm nhận ánh sáng xanh lục.

Họ gen rhodopsin hình thành do hiện tượng lặp đoạn và phân ly

Sự giống nhau về cấu trúc và chức năng giữa bốn loại protein rhodopsin cho thấy các gen mã hóa các chuỗi polypeptit này xuất hiện do hiện tượng lặp đoạn của một gen thụ thể cảm nhận ánh sáng tiền thân, rồi sau đó phân ly do sự tích lũy của nhiều đột biến. Các đột biến thúc đẩy khả năng cảm nhận màu sắc đã được ưu tiên chọn lọc qua quá trình tiến hóa hàng triệu năm. Các protein cảm nhận ánh sáng đỏ và xanh lục giống nhau hơn cả, và chỉ khác nhau khoảng 15 axit amin. Điều này cho thấy hai gen này chỉ phân ly trong thời gian gần đây. Sự khác biệt của hai protein này so với protein cảm nhận màu xanh dương và rhodopsin cho thấy các protein này phân ly sớm hơn trong quá trình tiến hóa từ gen mã hóa thụ thể cảm nhận ánh sáng tiền thân (hình 8.d).

Các đột biến ở họ gen rhodopsin gây ảnh hưởng đến thị lực và khả năng cảm nhận màu sắc

Nhiều đột biến thay thế axit amin ở gen rhodopsin gây nên bệnh mù một phần hay mù hoàn toàn

Người ta đã phát hiện được ít nhất 29 loại đột biến axit amin duy nhất trong gen mã hóa rhodopsin gây nên một nhóm bệnh di truyền trội nằm trên NST thường được gọi chung là các bệnh loạn sắc tố võng mạc (retinitis pigmentosa) với những triệu chứng đầu tiên là sự mất chức năng của các tế bào hình que, rồi dẫn đến sự thoái hóa dần dần của các tế bào võng mạc ngoại vi. Những đột biến này thường gây nên sự hình thành protein rhodopsin không được gấp nếp theo đúng cấu trúc không gian thông thường, hoặc trở nên kém bền vững. Do protein rhodopsin bình thường là thành phần cấu trúc quan trọng của màng tế bào hình que, những protein đột biến mất chức năng này được duy trì trong tế bào những không được gắn vào màng tế bào như bình thường. Các tế bào hình que không có đủ rhodopsin ở trên màng thường bị chết sau đó. Tùy thuộc vào số tế bào hình que bị chết, mà người bệnh có thể bị mù hoàn toàn hay mù một phần.

Các đột biến khác ở gen mã hóa rhodopsin gây nên một dạng bệnh lý ít nghiêm trọng hơn là bệnh mù ban đêm. Các đột biến có mức độ đa hình cao này làm thay đổi trình tự của các axit amin trong phân tử protein theo hướng làm tăng ngưỡng ánh sáng kích thích cần thiết để khởi đầu chuỗi truyền tín hiệu cảm nhận ánh sáng. Với những thay đổi này, khi cường độ ánh sáng yếu, mắt không cảm nhận được màu sắc.

Các đột biến trong gen mã hóa các sắc tố của tế bào hình nón làm thay đổi thị lực theo một số cách có thể phỏng đoán được

Các rối loạn thị lực gây ra bởi các đột biến liên quan đến các gen sắc tố thuộc tế bào hình nón ít nghiêm trọng hơn so với các rối loạn thị lực gây ra bởi các đột biến tương tự xảy ra với các gen rhodopsin trong các tế bào hình que. Nguyên nhân chủ yếu có lẽ bởi vì các tế bào hình que chiếm đến 95% số nơron thần kinh cảm nhận màu sắc ở người, trong khi các tế bào hình nón chỉ chiếm 5%. Một số đột biến liên quan đến gen mã hóa protein cảm nhận màu xanh dương nằm trên NST số 7 gây nên hội chứng rối loạn thị lực sắc tố xanh (tritanopia). Các đột biến ở gen mã hóa protein cảm nhận sắc tố đỏ trên NST X có thể làm mất chức năng cảm nhận màu đỏ của các tế bào hình nón và gây bệnh mù màu đỏ. Với một số đột biến nhỏ khác liên quan đến gen quy định protein cảm nhận màu đỏ có thể gây nên bệnh mù màu đỏ một phần hoặc hoàn toàn tùy vào vị trị đột biến.

Trao đổi chéo không cân bằng giữa các gen mã hóa protein xanh lục và đỏ gây nên phần lớn các biến dị về tính trạng cảm nhận màu sắc

Một người có thị lực bình thường thông thường có một gen mã hóa protein cảm nhận màu đỏ. Một số trong những người bình thường này có một gen xanh lục nằm gần kề, còn một số người khác có số gen xanh lục dao động từ hai đến năm bản sao. Các gen đỏ và xanh lục giống nhau đến 96% về trình tự ADN. Các gen màu xanh lục khác nhau giống nhau đến 99,9%. Do sự giống nhau và nằm gần nhau của những gen này nên hiện tượng trao đổi chéo không tương đồng dễ xảy ra với những gen này. Hàng loạt các dạng TĐC khác nhau ở vùng gen này có thể tạo ra các kiểu hình đột biến thiếu vắng hoàn toàn gen màu đỏ, hoặc gen màu xanh lục, có sự tổ hợp khác nhau của các gen màu xanh lục, mang gen lai xanh lục - đỏ. Do khả năng cảm nhận màu đỏ và xanh lục phụ thuộc vào tỉ lệ ánh sáng đỏ và xanh lục được phản chiếu từ hình ảnh, những người thiếu các gen đỏ và xanh lục sẽ cảm nhận màu đỏ và xanh lục là một màu giống nhau.

Một số đột biến có thể làm mất hoàn toàn khả năng nhìn màu đỏ và xanh lục

Đến nay, các nhà di truyền học đã tìm thấy bảy loại đột biến mất đoạn gây bệnh mù màu đỏ và xanh lục liên kết với NST giới tính X. Bệnh lý này được gọi là hội chứng tế bào hình nón đơn sắc xanh dương (blue cone monochromacy), bởi những người này chỉ cảm nhận được màu liên quan đến màu xanh dương. Nghiên cứu phân tử cho thấy cả bảy đột biến mất đoạn này đều liên quan đến một đoạn trình tự gồm 600 bp nằm ngoài vùng mã hóa của các gen đỏ và xanh lục. Điều này cho thấy khả năng trình tự này là một đoạn trình tự (gen) điều hòa dài cần thiết cho sự biểu hiện của chuỗi các gen đỏ và xanh lục.

Tóm lại, chúng ta nhìn được và cảm nhận được các màu sắc đa dạng, phong phú của vạn vật một phần là nhờ bốn gen trực tiếp tạo ra bốn loại phân tử protein trong các tế bào hình que và hình nón ở võng mạc mắt. Các đột biến làm thay đổi những chuỗi polypeptit này hoặc số lượng của chúng đều có thể làm thay đổi hoặc làm hỏng thị lực hoặc khả năng cảm nhận màu sắc của mắt.

Đánh giá:
0 dựa trên 0 đánh giá

Tuyển tập sử dụng module này

Nội dung cùng tác giả
 
Nội dung tương tự