Truyền thông CTĐ

Các QT cộng tác trong hệ thống máy tính tương tác lẫn nhau theo mô hình TTLQT nhằm phối hợp thực hiện. TTLQT và cộng tác QT phân tán là chủ đề chính của chương này. Chương ba đã nhấn mạnh tầm quan trọng của mô hình clien/server đối với truyền thông và quan hệ gắn kết giữa TTLQT và đồng bộ. TTLQT đóng vai trò đáng kể hơn trong hệ phân tán do chỉ có phương pháp trao đổi dữ liệu QT là CTĐ. Vì vậy mọi mô hình truyền thông liên QT mức cao đều được xây dựng trên nền CTĐ. Mọi cộng tác QT phân tán đều dựa vào truyền thông liên QT CTĐ.

TTLQT phụ thuộc vào năng lực định vị thực thể truyền thông. Đây chính là vai trò của dịch vụ tên trong hệ phân tán. Chương này trình bày ba mô hình truyền thông CTĐ cơ sở và mô hình dịch vụ tên. Tiếp theo là một minh hoạ cộng tác QT phân tán sử dụng hai bài toán kinh điển của TTCTĐ: loại trừ ràng buộc phân tán và chọn thủ lĩnh.

TTLQT có thể được xem xét tại các mức trừu tượng khác nhau. Bảng 4.1 cho năm mức từ mạng tới hệ giao vận và tới các QT ứng dụng. Theo phương diện HĐH phân tán, đầu tiên quan tâm tới ba mức trên chuyển vận TĐ trong các QT phân tán. Chúng là CTĐ, mô hình truyền thông định hướng dịch vụ mức cao sử dụng truyền thông hỏi/đáp và truyền thông giao dịch dựa trên mô hình hỏi/đáp và CTĐ.

Bảng 4.1. cho thấy CTĐ là mức thấp nhất của TT giữa các QT TT. TT hỏi/đáp dựa trên khái niệm client/server. Khi được thi hành như lời gọi thủ tục trong chương trình phân tán, mô hình TT được quy tới lời gọi thủ tục từ xa (RPC). Một cách tự nhiên, hỏi/đáp hoặc RPC dựa trên phương tiện CTĐ cơ sở.

Giao dịch là một dãy các TT hỏi/đáp đòi hỏi TT nguyên tử. Giao dịch biểu diễn đơn vị cơ sở của TT đối với các ứng dụng mức cao, chẳng hạn hệ CSDL. Thực hiện đồng thời các giao dịch cần được đồng bộ để duy trì tính nhất quán của hệ thống. Ngoài ra, khái niệm bộ nhớ chia xẻ lôgic hoặc đối tượng dữ liệu là phương pháp TT khác biệt đáng kể so với ba mô hình CTĐ. Trong hệ thống chỉ với bộ nhớ vật lý phân tán, bộ nhớ chia xẻ được mô phỏng bởi CTĐ. Lợi thế của bộ nhớ chia xẻ lôgic là dễ dàng lập trình, do TT là trong suốt. Giao dịch và bộ nhớ chia xẻ phân tán được trình bày trong các chương 6 và 7.

Bảng 4.1. Các mức khác nhau của TT

TTLQT
Giao dịch
Hỏi / Đáp (RPC)
CTĐ
HĐH mạng Kết nối giao vận
Mạng truyền thông Chuyển gói

TĐ là một tập các đối tượng dữ liệu, mà cấu trúc và sự giải thich chúng được xác định bởi các QT ngang hàng với nó. Đối tượng dữ liệu trong TĐ thường được định kiểu nhằm dễ dàng chuyển đổi đối tượng dữ liệu trong hệ thống hỗn tạp. TĐ bao gồm đầu TĐ (chứa thông tin điều khiển phụ thuộc hệ thống) và thân TĐ với kích thước cố định hoặc biến thiên. Trong hệ thống CTĐ, QT TT chuyển các TĐ được đóng gói tới dịch vụ giao vận hệ thống cung cấp kết nối truyền TĐ trong mạng. Giao diện tới dịch vụ giao vận là dịch vụ nguyên thủy hiển, chẳng hạn gửi và nhận, hoặc biến thể nào đó của cả hai. Ngữ nghĩa của các dịch vụ nguyên thủy TT này cần xác định hoàn toàn. Các bài toán chính được đưa ra trong các đoạn sau đây bao gồm TT là trực tiếp hay gián tiếp, kết khối hay không kết khối, tin cậy hay không tin cậy, dùng vùng đệm hay không.

Dịch vụ TT nguyên thủy cơ sở

Hai dịch vụ TT nguyên thủy cơ sở dưới đây là ví dụ để gửi và nhận TĐ. Sẽ là hiệu quả đối với QT ứng dụng khi chỉ rõ thực thể TT và TĐ được truyền:

send (đích, TĐ)

receive (nguồn, TĐ)

trong đó nguồn hoặc đích = (tên QT, liên kết, hộp thư hoặc cổng).

Một câu hỏi nảy sinh trực tiếp từ dịch vụ nguyên thủy là làm thế nào để địa chỉ hóa thực thể TT, nguồn hoặc đích? Dưới đây bàn luận về bốn lựa chọn trên: tên QT, kết nối, hộp thư, cổng.

Đầu tiên, giả sử địa chỉ hóa thực thể TT bằng tên QT (tức là định danh QT toàn cục). Khi thi hành thực sự, định danh QT toàn cục có thể được tạo duy nhất qua kết hợp địa chỉ máy chủ mạng với số hiệu QT cục bộ được sinh. Sơ đồ này ngầm định rằng chỉ có một đường TT lôgic trực tiếp tồn tại giữa cặp hai QT gửi và nhận như hình 4.1.a đã chỉ ra. Điều này tương tự TT input/output dùng trong CSP mà đoạn 3.5.3 đã chỉ ra hạn chế của cách tiếp cận này. Sơ đồ địa chỉ được chỉ dẫn là địa chỉ đối xứng do các QT gửi/nhận tương ứng biết rõ nhau trong dịch vụ TT nguyên thủy. Trong một số trường hợp, thuận lợi hơn cho QT nhận là nhận được TĐ từ nguồn chưa biết. Trong trường hợp như thế, địa chỉ nguồn của DV nguyên thủy nhậnmột biến vào mà được cho giá trị định danh QT gửi TĐ đó (nếu có một QT nhận). Địa chỉ gửi và nhận là bất đối xứng do chỉ QT gửi cần định vị người nhận. Hình 4.1.b. chỉ ra các trường hợp tổng quát hơn của DV nguyên thuỷ nhận.

Sơ đồ trên giả thiết tồn tại đường TT trực tiếp giữa cặp hai QT. Thực tế, đường TT là trong suốt hoàn toàn vì vậy đã không chú ý tới kết nối khi giao vận TĐ. Về quan niệm thì đơn giản nhưng để hợp lý chỉ có một đường TT định hướng kép giữa mỗi cặp hai QT TT. Để cho phép đường truyền dữ liệu phức giữa các QT và TT trực tiếp, bắt buộc định danh được mỗi đường đi trong dịch vụ TT nguyên thuỷ. Đòi hỏi này đưa đến khái niệm kết nối hayliên kết, tương tự với khái niệm chu trình ảo trong mạng TT. TĐ có thể được gửi theo các chu trình ảo khác nhau. Như vậy, điểm TT phức trong một QT cần phải đinh danh bằng việc sử dụng các kết nối khác nhau, mỗi kết nối đó ánh xạ tới một đường TT thực sự. Giống như chu trình ảo, kết nối được tạo và loại bỏ theo yêu cầu. Chúng được nhân hệ thống quản lý cục bộ và là những kênh TT không định hướng. TĐ được gửi qua một kết nối được hướng vào một đường TT mạng và được phân phối tới các máy chủ ở xa. Máy chủ từ xa ánh xạ TĐ tới kết nối đầu vào trong QT nhận. Hình 4.1.c chỉ ra tính hợp lý của việc duy trì hai kết nối giữa các QT khi dùng hai số hiệu kết nối khác nhau. QT đọc cần chú ý kết nối là tương tự với tên điểm vào thủ tục trong cuộc hẹn (đoạn 3.5.3) với lý do là chúng đều cung cấp điểm TT phức trong một QT. Tuy nhiên, giao vận dữ liệu bằng truyền tham số trong cuộc hẹn là định hướng kép.

Dùng tên QT và số hiệu kết nối để định vị các điểm TT cung cấp cơ chế TT trực tiếp giữa các QT ngang hàng. Tuy nhiên, đôi khi TT gián tiếp cũng được ưa chuộng. QT gửi không quan tâm tới định danh riêng biệt của QT nhận cho đến khi có một QT nhận được TĐ. Tương tự, QT nhận chỉ quan tâm đến chính TĐ mà không cần biết QT gửi. Ví dụ, client phức có thể đòi hỏi dịch vụ từ một trong nhiều dịch vụ phức (định danh của khách có thể được chứa trong chính TĐ). Kịch bản TT này là cồng kềnh khi dùng TT trực tiếp thi hành. Đây là tình huống chung trong cuộc sống hàng ngày, và được giải quyết bằng hộp thư chung. CTĐ dùng hộp thư chung là sơ đồ TT gián tiếp cung cấp cả TT đa điểm và đa đường một cách hợp lý. Kịch bản này được minh hoạ trong hình 4.2.

Về quan niệm, hộp thư là cấu trúc dữ liệu toàn cục chia xẻ của QT sản xuất (gửi) và QT khách hàng (nhận). Dùng hộp thư đòi hỏi sự đồng bộ chính xác dọc theo mạng mà đây là một bài toán khó. Do hộp thư là dùng cho TT, có thể gắn với nó một cấu trúc chuyển vận yếu và thi hành chúng bằng cách dùng vùng đệm và liên kết TT. Cổng là một ví dụ tốt cho hộp thư. Cổng là một khái niệm trừu tượng về một dòng xếp hàng có kích thước cố định hoạt động theo FIFO được nhân duy trì. TĐ có thể gắn vào đuôi và loại bỏ từ dòng đợi bởi các thao tác gửi và nhận xuyên qua một đường TT. Như vậy, cổng tương tự như danh sách ngoại trừ chúng là định hướng kép và có vùng đệm. Các QT TT qua cổng là gián tiếp. Cổng được tạo bởi QT người dùng nhờ lời gọi hệ thống đặc biệt và có thể được phù hợp với QT chủ và đủ năng lực. Chúng được chỉ dẫn bằng số hiệu cổng, mà không thể bị nhầm lẫn với địa chỉ cổng giao vận trong giao vận gói (địa chỉ cổng giao vận là cổng mạng và trong suốt với QT người dùng). Khi thi hành, cổng QT được ánh xạ tới cổng giao vận và ngược lại. Cổng hoặc hộp thư được hình dung như là phục vụ TT và đồng bộ, đã được biện luận trong đoạn 3.6. Thuật ngữ cổng và hộp thư thường được tráo đổi (thay thế nhau) trong một vài tài liệu. Tương tự như socket và cổng trong HĐH UNIX. Socket là giao diện mức cao sử dụng khái niệm cổng. Cổng có chủ nhân là QT riêng biệt. Cổng cung cấp TT nhiều-một (n-1). Hộp thư là đối tượng chia xẻ và cho phép truyền thông nhiều-nhiều (n-n).

Đồng bộ hóa TĐ và vùng đệm

TT CTĐ phụ thuộc một số điểm đồng bộ. Khi gửi TĐ tới đích xa, TĐ đó được chuyển tới nhân hệ thống gửi để thực hiện chuyển giao TĐ cho mạng TT. Cuối cùng, TĐ đi tới được nhân hệ thống đích (ở xa) thực hiện việc trao trả TĐ cho QT đích. Đồng bộ hóa truyền TĐ xảy xa giữa QT người dùng và nhân hệ thống, nhân và nhân, và QT nguồn và QT đích. Hình 4.3. chỉ rõ các giai đọan khác nhau của CTĐ trong hệ thống.

Dịch vụ nguyên thủy gửi và nhận được coi là kết khối nếu QT gọi cần kết khối để phân phối hay nhận TĐ tương ứng. Hầu hết hệ thống cho phép chọn dịch vụ nguyên thủy gửi/nhận kết khối hoặc không kết khối. Hầu hết ngầm định gửi không kết khối và nhận kết khối. Lý do là để thuận tiện, giả thiết rằng phân phối TĐ là đáng tin cậy và QT gửi có thể tiếp tục công việc một cách hiệu quả sau khi TĐ đã được dàn xếp và nhân bản tới nhân gửi. Mặt khác, QT nhận cần chờ cho đến khi TĐ xuất hiện để thực hiện công việc của mình. Tuy nhiên, không phải mọi trường đều như vậy. Chẳng hạn, QT gửi có thể mong muốn đồng bộ với QT nhận hoặc QT nhận mong muốn TĐ từ QT gửi phức và không thể không đủ chỗ cho thao tác nhận riêng biệt. Tại phía nhận, kết khối là hoàn toàn rõ ràng; nó cần được kết khối theo sự xuất hiện của TĐ. Về phía QT gửi, rắc rối hơn đôi chút. QT gửi nên chờ việc nhận được TĐ của nhân nguồn, nhân đích, hoặc QT đích hoặc thậm chí hoàn thiện một số thao tác của QT nhận? Danh sách dưới đây chỉ dẫn năm chức năng khác nhau của dịch vụ nguyên thủy gửi theo sơ đồ ở hình 4.3:

1. Gửi không kết khối, 1+8: QT gửi được loại bỏ sau khi TĐ đã được dàn xếp và sao tới nhân nguồn.

2. Gửi kết khối, 1+2+7+8: QT gửi được loại bỏ sau khi TĐ đã được truyền tới mạng

3. Gửi kết khối tin cậy, 1+2+3+6+7+8: QT gửi bị loại bỏ sau khi TĐ đã được nhân đích nhận xong.

4. Gửi kết khối tường minh, 1+2+3+4+5+6+7+8: QT gửi bị loại bỏ sau khi TĐ đã được QT nhận xong

5. Hỏi và đáp, 1-4, dịch vụ, 5-8: QT gửi bị loại bỏ sau khi TĐ đã được xử lý bởi QT nhận và lời đáp trở lại QT gửi.

Phương án đầu tiên là gửi dị bộ còn những phương án khác đều là gửi đồng bộ. Phương án cuối cùng chính là TT clien/server. Trong gửi dị bộ, QT gửi bị kết khối nếu nhân tại nó chưa sẵn sàng tiếp nhận TĐ, có thể do thiếu không gian vùng đệm. Đây là đòi hỏi tối thiểu nhất vì rất nguy hiểm nếu QT gửi tiếp tục công việc (chẳng hạn, tạo ra một TĐ mới) trước khi nhân gửi nắm điều khiển TĐ. Khi giả thiết là gửi/nhận dị bộ, ta mong muốn rằng dịch vụ nguyên thủy cần cho một mã quay về cho biết kết quả thành công hay thất bại của thao tác để qua phân tích mã quay về để hoặc gửi TĐ tiếp theo hoặc xử lý lỗi.

Trong sơ đồ hình 4.3, ngầm định tồn tại vùng đệm trong nhân gửi, nhân nhận và mạng TT. Vùng đệm trong nhân hệ thống cho phép TĐ được gửi đến thậm chí khi TĐ trước nó chưa được phân phối. Do QT gửi và nhận chạy dị bộ, chúng tạo ra và xử lý các TĐ theo các mức độ (tốc độ) khác nhau. Do có vùng đệm, sự không đồng nhất này trở nên êm ả. Thêm nữa, khả năng QT gửi bị kết khối được rút gọn và thông lượng truyền tổng thể TĐ được tăng lên. Vùng đệm được dùng để điều khiển lưu lượng trong mạng TT. Trong HĐH, thông thường vùng đệm được chia xẻ bởi TT gửi và nhận đa thanh phần. Quản lý vùng đệm hiệu quả trở thành một bài toán quan trọng. Quản lý vùng đệm không chính quy có thể trở thành nguyên nhân bế tắc TT.

Về lôgic, có thể kết hợp vùng đệm trong nhân gửi, nhân nhận, và mạng thành một vùng đệm lớn. QT gửi tạo ra TĐ và chèn chúng vào vùng đệm còn QT nhận xóa khỏi vùng đệm và sử dụng chúng. Nếu vùng đệm là không giới hạn, QT gửi dị bộ là không kết khối. Một trường hợp đặc biệt khác là mọi thành phần là vắng vùng đệm (zero-buffer). Trong trường hợp này, QT gửi và QT nhận bắt buộc phải đồng bộ (trách nhiệm đồng bộ hóa dành cho người viết chương trình các QT này) để đủ năng lực truyền TĐ (bất cứ TĐ nào xuất hiện thì trước hết phải đợi TĐ trước đó). Điều này tương tự như khái niệm cuộc hẹn và là một kiểu gửi/nhận kết khối tường minh.

API ống dẫn và Socket

Như đã nói ở trên, tồn tại lượng lớn và đa dạng các dịch vụ nguyên thủy TT CTĐ với các khái niệm và giả thiết khác nhau. Khi TT được thực hiện nhờ một tập hoàn toàn xác định các giao diện chương trình ứng dụng chuẩn (API) sẽ tạo thuận lợi cho người dùng và hiệu quả cho hệ thống. TT QT người dùng sử dụng một API độc lập với môi trường TT hạ tầng. ống dẫn (pipe) và socket là hai API TTLQT được sử dụng rộng rãi trong cả hai môi trường UNIX và Windows.

Như trình bày trong đoạn 3.5.3 thì chia xẻ kênh TT về mặt lôgic là tương đương với chia xẻ biến. Cả hai đều là chia xẻ đối tượng. Trong thực tế, kênh TT được thi hành bởi chia xẻ lưu trữ, chẳng hạn không gian nhân, bộ nhớ, hoặc file. Trong hệ đơn xử lý hỗ trợ QT TT có thể mô phỏng kênh TT nhờ chia xẻ bộ nhớ trong không gian nhân. QT người dùng thấy được kênh TT theo trình diễn bởi API. Chi tiết nội tại và thi hành, chẳng hạn như dung tích của kênh và đồng bộ truy nhập bộ nhớ, được nhân quản lý và trong suốt với người dùng. ống dẫn được thi hành bằng một vùng đệm dòng byte FIFO kích thước cố định được nhân duy trì. Được hai QT TT sử dụng, phục vụ ống dẫn như một kết nối TT không định hướng mà một QT có thể ghi dữ liệu vào đuôi của ống dẫn và một QT khác có thể đọc từ đầu của nó. ống dẫn được khởi tạo bởi lời gọi hệ thống pipe cho hai đặc tả ống dẫn (tương tự như đặc tả file), một để đọc và một để ghi. Kịch bản điển hình để ống dẫn giữa hai QT là vì một QT phải khởi tạo ống dẫn, fork QT khác, gắn QT cha vào đầu đọc ống dẫn và gắn đầu ghi ống dẫn tới QT con. Như vậy một dòng dữ liệu một chiều trở thành chuyển dịch giữa QT cha và con khi sử dụng các thao tác ghi và đọc bình thường. Đặc tả ống dẫn được các QT TT chia xẻ. Điều này ngụ ý rằng ống dẫn được sử dụng chỉ với các QT có quan hệ với nhau (tức là, QT được khởi tạo thông qua thao tác fork). Trong điều kiện thông thường, QT đọc và ghi được giả thiết là chạy đồng thời đối với mọi ống dẫn được tạo. ống dẫn chỉ tồn tại trong khoảng thời gian cả hai QT đọc và ghi hoạt động. Thao tác ghi ống dẫn không kèm thao tác đọc tương ứng là vô nghĩa do ống dẫn ngừng tồn tại khi QT ghi kết thúc.

Dữ liệu trong ống dẫn mặc nhiên là dòng byte liên tục. Tiếp cận này được chọn nhằm khớp với giả thiết chung cấu trúc file hướng byte của UNIX. Đôi khi mong muốn rằng là dòng dữ liệu cấu trúc, chẳng hạn TĐ độ dài biến đổi trong kênh và khái niệm ống dẫn có thể được mở rộng để bao gói cả TĐ. Kiểu kênh TT này được hiểu là dòng xếp hàng TĐ. Dòng xếp hàng TĐ được thi hành trong không gian bộ nhớ của nhân. Nhiều hệ thống cung cấp dòng xếp hàng TĐ như là một IPC API.

Với những QT không quan hệ (fork), cần định danh ống dẫn vì đặc tả ống dẫn không thể chia xẻ. Một giải pháp là thay cấu trúc dữ liệu ống dẫn nhân bằng một file FIFO đặc biệt. File FIFO đặc biệt được định danh duy nhất bằng tên đường tương tự như file thông thường. ống dẫn với tên đường được gọi là ống dẫn có tên. Với một tên duy nhất, ống dẫn có tên có thể được chia xẻ giữa các QT rời rạc xuyên qua các máy tính khác nhau với một hệ thống file chung. Do ống dẫn có tên là file thì các QT TT không cần đồng thời tồn tại. QT ghi có thể ghi xong dữ liệu tới một ống dẫn có tên và kết thúc trước khi một thao tác đọc file xuất hiện. ống dẫn có tên dùng ngữ nghĩa của một file thông thường. Chúng được khởi tạo bởi câu lệnh open trước khi tạo ra truy nhập tới file FIFO.

ống dẫn và ống dẫn có tên thi hành bài toán IPC giữa nhà sản xuấtkhách hàng. Trong bài toán nhà sản xuất và khách hàng, QT sản xuất (gửi) và QT khách (nhận) tương tác nhau thông qua một vùng đệm chung để hoàn thành TTLQT. Vấn đề đồng bộ là loại trừ ràng buộc đối với truy nhập vùng đệm và cộng tác có điều kiện khi vùng đệm là đầy hoặc rỗng. Truy nhập vùng đệm được chú ý như khoảng tới hạn mà cần được giám sát. Điều kiện tràn hoặc rỗng của vùng đệm là tương tự kết khối của gửi (sản xuất) và nhận (khách hàng) với một vùng đệm cố định. Thi hành ống dẫn và ống dẫn có tên đơn thuần bảo đảm tính nguyên tử của vùng đệm nhân chia xẻ và file FIFO đặc biệt và việc kết khối thao tác ghi và đọc khi vùng lưu trữ chia xẻ là đầy hoặc rỗng. Các byte được ghi từ QT phức tới ống dẫn được đảm bảo không khi nào là chen lẫn. Cẩn thận đặc biệt khi ghi dữ liệu riêng tới ống dẫn trước khi nó trở nên đầy. Hoặc toàn bộ các byte của TĐ được ghi vào ống dẫn hoặc không.

Dùng ống dẫn định danh gặp một hạn chế từ tên miền đơn trong hệ thống file chung. Để đạt được TT QT liên miền mà không có cấu trúc dữ liệu hoặc file có tên duy nhất và được chia xẻ, cần có một IPC API chạy trên đỉnh của dịch vụ giao vận. Hai API TT liên QT liên miền được dùng rộng rãi nhất là socket Berkeley và Giao diện mức giao vận hệ thống 5 (TLI). Socket Berkerley là ví dụ minh họa API TT.

Việc đặt tên kênh TT qua một miền hỗn tạp là không khả thi. Tuy nhiên, kênh TT có thể được hình dung như một cặp gồm hai đầu mút TT. Socket là mút TT của kết nối TT được quản lý bởi dịch vụ giao vận. Tương tự việc sử dụng ống dẫn cho phép file I/O có ngữ nghĩa đối với việc đọc từghi tới ống dẫn, mô hình I/O mạng socket dựa trên I/O File quy ước. Trừu tượng hóa I/O mạng như I/O file làm tăng tính trong suốt truy nhập trong hệ thống. Socket được tạo ra nhờ lời gọi hệ thống socket cho một đặc tả socket phục vụ các thao tác I/O mạng tiếp sau, bao gồm cả đọc/ghi hướng file và gửi/nhận đặc trưng TT. Lời gọi hệ thống socket cũng được sử dụng trong nhiều giao thức mạng như TCP, UDP và IP. TCP là giao thức giao vận dòng thực hiện hướng kết nối và UDP là giao thức giao vận sơ đồ không kết nối. Chúng là hai giao thức giao vận chính. IP được dùng để truyền dòng gói dữ liệu và là giao thức tầng mạng không kết nối trong bộ giao thức Internet. Đặc tả socket là nút TT logic (LCE: Logic Communication EndPoint) cục bộ đối với một QT; nó bắt buộc phải phù hợp với nút TT vật lý (PCE: Physic CE) để truyền dữ liệu. Nút TT vật lý được đặc tả bởi địa chỉ máy chủ mạng và cặp cổng giao vận. Địa chỉ máy chủ mạng là toàn cục, trong khi số hiệu của giao vận được sinh cục bộ bởi dịch vụ giao vận. Việc phù hợp một LCE với một PCE được thi hành bằng lời gọi hệ thống bind. Hình 4.4. chỉ ra một ví dụ TT ngang hàng không kết nối dùng các lời gọi hệ thống socket, bindsendto/recvfrom. Do TT là không kết nối nên mỗi lời gọi sendto/recvfrom bắt buộc chứa đặc tả socket cục bộ và PCE từ xa.

Trong TT socket không kết nối mỗi QT ngang hàng bắt buộc phải biết PCE từ xa của nó. Có thể được loại bỏ việc gọi tên hiển của PCE từ xa trong lời gọi gửi/nhận nếu lời gọi socket kết nối ràng buộc một LCE cục bộ với PCE từ xa của nó trước khi bắt đầu truyền dữ liệu. Sau thao tác kết nối, truyền dữ liệu có thể đơn giản là send/recv hoặc write/read không có đặc tả của PCE từ xa. Lời gọi socket kết nối thông thường được dành riêng cho TT Client/Server hướng kết nối. Đối với TT Client/Server, dịch vụ cần có được PCE rõ ràng. Một phục vụ sẽ cần TT với khách phức có PCE chưa biết. Khách đưa ra một lời gọi connect tới phục vụ để hẹn (cuộc hẹn), với yêu cầu khách nhờ một accept và thiết lập có kết quả một kết nối tới khách đó. Về khái niệm, điều này tương đương với thi hành cuộc hẹn Ada trong TT liên miền. Hình 4.5. minh họa TT socket Client/Server hướng kết nối. Trong thi hành UNIX, lời gọi socket listen được dùng để chỉ ra phục vụ sẽ chấp nhận một kết nối và đặc tả độ dài dòng xếp hàng (bao nhiêu lời hỏi xảy ra có thể xếp hàng). Lời gọi accept hẹn với lời gọi connect được tích lũy lại trong dòng xếp hàng listen. Một lời gọi accept sẽ kết khối nếu chưa có một connect giải quyết. Nếu có, nó xoá bỏ yêu cầu connect từ dòng đợi và đưa ra một đặc tả socket mới được dùng để TT với khách đã được kết nối. Đặc tả socket cũ còn lại trong dịch vụ cho các yêu cầu khách khác. Trong thi hành phục vụ đồng thời, QT (luồng) con là được phân nhánh đối với mỗi kết nối sử dụng đặc tả socket mới.

Socket an toàn

Socket đã trở thành API CTĐ phổ biến nhất trong cộng đồng Internet. Do việc sử dụng rộng rãi các ứng dụng Windows mà nhóm chuẩn WinSock, bao gồm hơn 30 hãng công nghiệp (kể cả MicroSoft) đã phát triển một socket Windows chuẩn (WinSock). WinSock bắt nguồn từ socket Berkeley. Nó gồm một tập công phu các API và được mở rộng nhằm cung cấp tính trong suốt giao vận hoàn hảo khi sử dụng giao diện cung cấp dịch vụ (SPI: Service Provider Interface) trừu tượng làm dễ dàng tương thích plug-in cho hầu hết các giao thức giao vận. Phiên bản gần nhất cũng chứa tầng socket an toàn (SSL: Secure Socket Layer).

Đòi hỏi an toàn TT trên Internet đã thúc đẩy IETF (Internet Engineering Task Force) phát triển SSL. Mục tiêu SSL là cung cấp:

- Bảo mật trong TT socket khi dùng mã đối xứng để mã hoá dữ liệu

- Toàn vẹn dữ liệu trong socket khi kiểm tra tính toàn vẹn TĐ

- Xác thực phục vụ và khách khi dùng mã hóa khóa công khai bất đối xứng.

Điểm chủ yếu của SSL chứa trong hai mức giao thức: một giao thức Handshake và một giao thức Record Layer. Giao thức Handshake tương ứng thiết lập các khóa ghi (khóa phiên TT để bí mật dữ liệu) và MAC (Message Authentication Check để toàn vẹn dữ liệu) bí mật và xác nhận tính xác thực của phục vụ và khách. Giao thức Record Layer thích hợp để phân đoạn, nén/giãn nén và mã hóa/giải mã các bản ghi của TĐ. Kết quả cuối cùng của giao thức Handshake là một cấu trúc dữ liệu chia xẻ (được gọi là mastersecret) chỉ khách và phục vụ biết được, mà có thể được biến đổi thành write key và một MACsecret để TT an toàn bằng Record Layer.

Hình 4.6. trình bày một kịch bản đơn giản của giao thức Handshake SSL. Khách muốn liên lạc với phục vụ bằng cách gửi TĐ ClientHello tới phục vụ đó. Thành phần chính của TĐ chứa một số ngẫu nhiên (randomC) và một tập thuật toán mật mã (CipherSuites). Số ngẫu nhiên được dùng để tính toán mastersecret quyết định. CipherSuites là một danh sách lựa chọn mã hóa được phục vụ đàm phán và chọn. Phục vụ trả lại cho khách một TĐ phục vụHello chứa một số ngẫu nhiên randomS, một thuật toán mã hóa CipherSuite được chọn và một định danh phiên cho kết nối.

Tại thời điểm này, phục vụ có thể xác nhận định danh của nó bằng việc gửi một giấy chứng nhận tới khách. Giấy chứng nhận được cho bằng giấy xác thực (CA) nhóm ba. Giấy chứng nhận được QT cấp giấy ký khi dùng khóa bí mật của nó và như vậy không thể dễ giả mạo. SSL dùng xác nhận X.509. Phục vụ có thể yêu cầu giấy chứng nhận của khách. Mỗi một chứng nhận mang thành phần khóa công khai trong cặp gồm khóa công khai và khóa bí mật của đối tượng được ghi nhận (khách hoặc phục vụ). Khách cần khóa công khai của phục vụ để biến đổi thông tin bí mật tới phục vụ. Mã hóa khóa công khai được trình bày trong chương sau. Phương pháp cặp khóa kép (công khai và bí mật) được coi là một thuật toán mã hóa. Với nó, một TĐ được mã hóa bởi một khóa công khai có thể được giải mã bằng khóa bí mật tương ứng và ngược lại. Khóa công khai được ghi nhận bằng thông tin công khai còn khóa bí mật chỉ có các đối tượng biết. Để đơn giản hóa trong trình bày giao thức Handshake SSL ở hình 4.6 đã bỏ qua việc xác nhận tính hợp lệ của các giấy chứng nhận.

Không cần giấy chứng nhận, một phục vụ nặc danh có thể gửi khoá công khai của nó trong TĐ phục vụKeyExchange tới Khách. Khóa công khai này không cần phải là khóa đã được ghi nhận. Phục vụ sinh tạm thời khóa công khai để sử dụng theo từng lần yêu cầu của khách. Khách đáp lại bằng một TĐ ClientKeyExchange mang một pre-mastersecret mã hóa theo khóa công khai tạm thời của phục vụ. Chỉ có phục vụ với khóa bí mật tương ứng mới giải mã được pre-mastersecret. Lúc đó, cả khách và phục vụ chia xẻ pre-mastersecret và hai số ngẫu nhiên. Cả hai QT độc lập áp dụng hàm băm một chiều tới thông tin chia xẻ để chuyển pre-mastersecret quyết định chứa khóa ghi (write key) và MAC bí mật. Các khóa và MAC bí mật này được dùng để liên kết với bộ mật mã vừa được đàm phán. Chúng được ChangeCipherSpec tạo hiệu quả nhằm thay thế bộ mật mã cũ bằng một bộ mới. Các TĐ finished chấm dứt việc bắt tay. Chúng cũng được dùng để xác minh việc trao đổi khóa và xác thực có thành công hay không. Việc kiểm tra thông qua xác nhận TĐ finished chứa kết quả băm của mastersecret được móc nối với mọi TĐ bắt tay.

TT socket an toàn được bắt đầu sau khi TĐ finished đã được trao đổi và kiểm tra. Mọi TĐ socket tiếp sau được mã hóa theo thuật toán mã hóa và khóa ghi bí mật đã được thiết lập cho đến khi phiên được thương lượng lại. Mọi TĐ chứa một bộ kiểm tra xác thực TĐ là kết quả băm TĐ với MAC bí mật. Không có MAC bí mật, sản xuất MAC cho TĐ tạm thời trở nên bất hợp lý. TĐ socket được xử lý bởi Record Layer trở thành bí mật và bền vững. Khái niệm giao thức socket an toàn vẫn đang được tiếp tục tiến hóa và cải tiến.

Truyền thông nhóm và phân phát bội (multicast)

Mô hình TT CTĐ được trình bày trên đây dùng cho TT điểm-điểm. Mục này mô tả nhu cầu và thi hành TT nhóm đa điểm. Cần lưu ý là nhóm là bản chất để phát triển phần mềm cộng tác trong hệ phân tán hay tự trị. Quản trị nhóm các QT hoặc đối tượng cần có cơ chế TT phân phát bội để gửi TĐ tới các thành viên trong nhóm. Tồn tại hai kịch bản ứng dụng TT phân phát bội. Đầu tiên là một khách mong muốn cố níu kéo một dịch vụ từ bất kỳ phục vụ nào miễn là có khả năng đáp ứng dịch vụ. Thứ hai là một khách đòi hỏi dịch vụ từ tất cả các thành viên trong nhóm phục vụ.

Trong trường hợp đầu tiên, không cần phải tất cả phục vụ đáp ứng lại mà chỉ cần một phục vụ. Phân phát bội được thực hiện trên cơ sở cố gắng nhất (best-effort) và được lặp lại nếu cần thiết. Hệ thống chỉ cần đảm bảo phân phát bội TĐ tới các QT không bị mắc lỗi có thể đạt được. Cách như vậy gọi là phân phát bội cố gắng nhất.

Trong trường hợp sau, cần đảm bảo là mọi phục vụ đều nhận được yêu cầu và tính bền vững trong các phục vụ có thể được duy trì. TĐ phân phát bội cần được đáp ứng cho tất cả các phục vụ nhận hoặc không một phục vụ nào (tức là toàn bộ hoặc không cái nào); cách này thường được gọi là phân phát bội tin cậy. Đòi hỏi toàn bộ hoặc không cái nào có nghĩa là TĐ phân phát bội nhận được cần được đưa vào vùng đệm trước khi phân phối cho QT ứng dụng. Chú ý trong phân phát bội tin cậy đồng bộ ảo, TĐ có thể được phân phối trước khi nhận được (Đồng bộ ảo được thảo luận ở phần sau).

Ihi hành phân phát bội phức tạp hơn vì gặp nhiều thiếu thốn do chưa có phân phát bội nguyên tử. Lỗi của QT nhận hoặc kết nối truyền thông có thể được QT khởi tạo TĐ phát hiện khi sử dụng cơ chế quá hạn hoặc xác nhận. QT khởi tạo sau đó có thể thoát ra hoặc tiếp tục phân phát bội bằng cách loại bỏ thành viên lỗi trong nhóm. Lỗi của khởi tạo một chiều (haft-way) trong phân phát bội chỉ mới được giải quyết một cách giả định. Rất khó khăn để xác định khởi tạo là có lỗi hay không. Để xác định thoát từ lỗi hoặc toàn bộ các bộ phận của phân phát bội là hoàn thiện, một trong các QT nhận bắt buộc được chọn như một khởi tạo mới. Kỹ thuật thông thường còn đòi hỏi các QT nhận phải đưa vào bộ đệm phân phát bội cho tới khi TĐ đã trở nên an toàn cho phân phối. Lỗi được kiểm soát nhờ hệ thống ảo. Phân phát bội bỏ qua đồng bộ ảo là không thực sự tin cậy; chúng chỉ là cố-gắng-nhất.

Quan hệ trực tiếp với bài toán phân phối tin cậy là bài toán về thứ tự phân phối các TĐ. Khi TĐ phức là phân phát bội tới cùng một nhóm, chúng xuất hiện tại các thành viên khác nhau trong nhóm theo các thứ tự khác nhau (do tính biến động của độ trễ trong mạng).

Hình 4.7 cho một số ví dụ TT nhóm yêu cầu thứ tự TĐ: G và s tương ứng biểu diễn nhóm và nguồn TĐ. QT s có thể đứng ngoài nhóm hoặc là một thành viên của nhóm. Giả thiết rằng TĐ phân phát bội cần được nhận và phân phối ngay lập lức theo thứ tự chúng được gửi. Nếu giả thiết này là đúng thì công việc lập trình nhóm đơn giản hơn rất nhiều. Tuy nhiên điều đáng tiếc là giả thiết này không có thực và thiếu ý nghĩa vì trong hệ phân tán không có được thời gian toàn cục và giao vận TĐ trong mạng gặp độ trễ TT đáng kể và không ổn định. Về ngữ nghĩa, phân phát bội có thể được xác định sao cho TĐ được nhận theo thứ tự khác nhau tại các nút khác nhau có thể được sắp xếp lại và phân phối tới QT ứng dụng theo quy tắc chặt chẽ nhỏ hơn. Thứ tự phân phát bội dưới đây được xếp theo độ tăng của tính chặt chẽ:

+ Thứ tự FIFO: TĐ phân phát bội từ nguồn đơn được phân phối theo thứ tự chúng được gửi.

+ Thứ tự nhân quả: TĐ quan hệ nhân quả từ nguồn phức được phân phối theo thứ tự nhân quả của chúng.

+ Thứ tự tổng: Mọi TĐ phân phát bội tới một nhóm được phân phối tới mọi thành viên của nhóm theo cùng thứ tự. Một thứ tự tin cậy và tổng được gọi là thứ tự nguyên tử.

Tại mỗi nút, chương trình điều khiển TT chịu trách nhiệm nhận TĐ và sắp xếp lại theo thứ tự tới QT ứng dụng. Điều này tương tự như tính chất mô hình bất biến của hệ thống file phân tán và hệ thống bộ nhớ chia xẻ phân tán. Chúng là tương tự nhau trong bối cảnh phân tán.

Thi hành theo thứ tự FIFO (hình 4.7a) là dễ dàng. Do chỉ có các TĐ được gửi từ cùng một QT khởi tạo, các TĐ này được gán số hiệu TĐ tuần tự. Điều khiển TT có thể làm trễ TĐ hoặc loại bỏ các TĐ lặp khi sử dụng dãy số hiệu tuần tự này. Dãy số hiệu tuần tự TĐ là cục bộ đối với mỗi nguồn TĐ và vì vậy không thể kết hợp các TĐ từ các nguồn khác nhau (xem hình 4.7 b). Thứ tự nhân quả và thứ tự tổng của TĐ phân phát bội từ các nguồn khác nhau là công phu hơn.

Hai TĐ được gọi là có quan hệ nhân quả với nhau nếu một TĐ được sinh ra sau khi đã tiếp nhận xong cái còn lại. Thứ tự TĐ nhân quả cần được trình bày tại mọi nút (phía) do nội dung của TĐ thứ hai có thể được tác động theo kết quả xử lý TĐ đầu tiên. Quan hệ nhân quả này có thể trải dọc qua một vài thành viên trong nhóm do tính bắc cầu của quan hệ nhân quả. Thi hành thứ tự nhân quả các TĐ bằng cách mở rộng số hiệu tuần tự thành vector số hiệu tuần tự, S=(S1, S2, ..., Sn) được mỗi thành viên duy trì. Mỗi Sk trình bày số hiệu TĐ sẽ nhận được từ thành viên k của nhóm. Khi thành viên i phân phát bội một TĐ mới m, nó làm tăng Si lên 1 (dấu hiệu cho biết số lượng TĐ mà i đã phân phát bội) và gắn vector S với m. Khi nhận được TĐ m có vector tuần tự T=(T1, T2, ..., Tn) từ thành viên i, thành viên j hoặc tiếp nhận hoặc làm trễ phân phối m theo các luật dưới đây (Chú ý Si là thành phần vector số hiệu tại thành viên j):

 Tiếp nhận TĐ m nếu Ti=Si+1 và Tk ≤ Sk với mọi k≠i. Điều kiện đầu tiên (Ti=Si+1) chỉ ra rằng thành viên j mong chờ TĐ tiếp sau theo dãy từ thành viên i. Điều kiện thứ hai xác minh rằng thành viên j đã phân phát mọi TĐ phân phát bội mà thành viên i đã phân phát trước khi nó phân phát bội m (có thể một vài cái nữa). Như vậy, j đã thực sự phân phát mọi TĐ đứng trước (nhân quả) m.

 Làm trễ TĐ m nếu hoặc Ti>Si + 1 hoặc tồn tại một số k≠i mà Tk > Sk. Trường hợp đầu tiên, một vài TĐ phân phát bội trước đây từ thành viện i đã bị thất lạc mà thành viên j đã không nhận được. Trường hợp thứ 2, khi thành viên i phân phát bộ m thì nó đã nhận được nhiều TĐ phân phát bội từ các thành viên khác trong nhóm hơn so với thành viên j. Trong cả hai trường hợp, TĐ bắt buộc phải bị làm chậm để đảm bảo tính nhân quả.

 Loại bỏ TĐ nếu Ti ≤ Si. Việc sao lặp TĐ từ thành viên i đã được bỏ qua hoặc loại bỏ bởi thành viên j.

Giao thức thứ tự nhân quả này giả thiết rằng phân phát bội trong một nhóm đóng (tức là nguồn của phân phát bội cũng là một thành viên của nhóm) và phân phát bội không thể mở rộng dọc theo nhóm (mục sau sẽ bàn luận về việc này).

Khi thi hành, phân phát bội đòi hỏi công phu hơn. Theo trực giác, đòi hỏi rằng một phân phát bội buộc phải hoàn thiện và TĐ phân phát bội buộc phải được sắp xếp theo thời gian hoàn thiện phân phát bội trước khi phân phát tới QT ứng dụng. Điều đó tạo nên lý do kết hợp quảng bá nguyên tử với quảng bá thứ tự tổng thành một giao thức. Điều này đưa đến khái niệm phân phát bội thứ tự tổng hai pha. Trong pha đầu tiên của giao thức phân phát bội, QT khởi tạo quảng bá TĐ và thu thập xác nhận với tem thời gian lôgic từ tất cả các thành viên trong nhóm. Suốt thời gian pha 2, sau khi đã thu thập xong mọi xác nhận với tem thời gian lôgic, QT khởi tạo gửi một TĐ cam kết mang tem thời gian xác nhận cao nhất như là thời gian logic đối với việc cam kết. Thành viên trong nhóm sau đó quyết định hoặc TĐ cam kết được đưa vào vùng đệm hoặc phân phát dựa trên thời gian cam kết lôgic toàn cục của TĐ phân phát bội.

Giao thức phân phát bội 2 pha được biểu diễn trong hình 4.8. Trong hình vẽ, hai TĐ, m1 và m2 từ hai nguồn khác nhau được quảng bá tới một nhóm. Để rõ ràng, ở đây có hai nguồn (s1, s2) và hai thành viên trong nhóm (g1, g2). Thời gian đồng hồ lôgic khởi tạo của chúng cho trong vòng tròn. Các đường liền nét và rời nét tương ứng trình bày TĐ và TĐ xác nhận. Mỗi một cung được gán nhãn bởi một cặp hai số. Số đầu tiên (từ 1 đến 8) chỉ bước theo thứ tự bộ phận của xuất hiện và số thứ hai là tem thời gian của TĐ. Ví dụ, QT 1 phân phát bội s1. Khi mọi xác nhận (bước 2 và 8) đã được s1 nhận, bộ xử lý tính toán tem thời gian cam kết (9, là lớn nhất của 6 và 9) và trả lại TĐ cam kết cho toàn nhóm. TĐ cam kết mang thời gian hoàn thiện cuối cùng của quảng bá TĐ không được chỉ trong hình. Tương tự, s2 tính toán tem thời gian cam kết là 8 đối với phân phát bội m2 của nó. Bảng chỉ dẫn vùng đệm được quản lý bởi CT điều khiển TT của thành viên nhóm g1. Bộ xử lý đã xác nhận 2 TĐ với tem thời gian là 6 và 8. TĐ cam kết với tem thời gian 8 và 9 có thể tới với thứ tự bất kỳ nhưng CT điều khiển bắt buộc phải chờ cả hai trước khi phân phát được thực hiện. TĐ m2 được hoàn thiện trước m1 bởi vì tem cam kết của nó nhỏ hơn. TĐ m3 (phân phát bội bởi một nguồn khác) không được chú ý tại đây vì TĐ cam kết của nó có tem thời gian cao hơn 10 và như vậy bắt buộc được phân phát sau m1 và m2. Mọi TĐ sau này cũng có tem thời gian lớn hơn và không cần chú ý.

Bộ đếm TĐ tổng trong giao thức phân phát bội thứ tự tổng hai pha là cao. Nhiều hệ thống (chẳng hạn, ISIS) đơn giản giải pháp thứ tự TĐ tổng bởi giả thiết tồn tại một dịch vụ đánh số dãy toàn cục. Mọi TĐ phân phát bội nhận một số tuần tự toàn cục từ bộ sắp xếp dãy, một bộ xử lý là một thành viên của nhóm. Khi bộ xử lý nhận một TĐ thứ tự tổng, sự phân phát TĐ được làm trễ tới khi số hiệu dãy toàn cục đã được nhận. Bộ sắp xếp dãy đặt vào vùng đệm thứ tự tổng phân phát bội mà nó nhận, gán cho chúng số dãy toàn cục và sau đó phân phát bội số dãy này tới các thành viên khác của nhóm (cần chứng tỏ năng lực gán nhiều số hiệu dãy trong một TĐ đơn là tối ưu). Mỗi khi nhận được số hiệu dãy của phân phát bội toàn cục, bộ xử lý phân phát bội theo thứ tự cho bởi số hiệu dãy toàn cục. Nếu bộ xử lý dãy bị lỗi, một bộ xử lý dãy khác được chọn từ các thành viên trong nhóm.

Trong nhiều ứng dụng phân tán, một QT có thể thuộc vào nhiều nhóm. Hình 4.7.c chỉ ra hai ví dụ tương đương của phân phát bội tới các nhóm giao nhau. Trên đây cho giao thức đánh thứ tự TĐ trong một nhóm đơn. Tuy nhiên, thứ tự có thể khác nhau khi các nhóm rời rạc thậm chí với cùng một TĐ phân phối bội. Với nhóm giao nhau, thì cần phải có sự cộng tác trong nhóm để duy trì thứ tự tường minh của TĐ đối với các thành viên thuộc vùng giao. Một ví dụ về nhóm giao nhau hữu dụng là thi hành các phục vụ được nhân bản khi dùng phân phát bội nguyên tử. Một nhóm chứa chỉ các phục vụ. Với mỗi khách, tồn tại một nhóm khách gồm khách đó và tất cả các phục vụ. Khách có thể thuộc vào một nhóm khác mà chứa các khách khác.

Một giải pháp cho bài toán nhóm giao nhau là đặt cấu trúc được công nhận trên đây đối với nhóm và phân phát bội TĐ sử dụng các cấu trúc này. Ví dụ, các thành viên của nhóm có thể được cấu trúc như là một cây thác triển (cây thác triển là một biểu diễn hợp lý của quan hệ thành viên nhóm trong mạng máy tính không có hỗ trợ quảng bá về phần cứng). Gốc cây đóng vai trò đứng đầu nhóm. Cung của cây trình bày kênh TT FIFO. Một TĐ phân phối bội trước hét gửi tới đỉnh đứng đầu (gốc) và sau đó gửi tới mọi thành viên trong nhóm theo lộ trình TĐ dọc theo các cung của cây. Thành viên trong phần giao phải được cấu hình thành một cây con chung giữa hai nhóm giao nhau. Trong ví dụ hình 4.9. chỉ ra hai nhóm: nhóm 1 gồm các thành viên A, B, C, D và nhóm 2 gồm các thành viên C, D, F và G. Tập giao {C, D} được cấu trúc như một cây con chung giữa hai nhóm.

Đạt được sự mềm dẻo hơn nếu như phân phát bội tới nhiều hơn một nhóm (hình 4.7.d). Để đạt được tính nhất quán giữa các nhóm, cần phải xác định một nhóm mới là hợp nhất của hai nhóm. Hình 4.7 b và 4.7.c đã rút gọn vấn đề này.